Skip to main content

NKT Cells and Autoimmune Diseases: Unraveling the Complexity

  • Chapter
Book cover T Cell Activation by CD1 and Lipid Antigens

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 314))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cohen IR, Young DB (1991) Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today 12:105–110

    Article  PubMed  CAS  Google Scholar 

  2. Kuchroo VK, Anderson AC, Waldner H, Munder M, Bettelli E, Nicholson LB (2002) T cell response in experimental autoimmune encephalomyelitis (EAE): role of self and cross-reactive antigens in shaping, tuning, and regulating the autopathogenic T cell repertoire. Annu Rev Immunol 20:101–123

    Article  PubMed  CAS  Google Scholar 

  3. Wilson SB, Delovitch TL (2003) Janus-like role of regulatory NKT cells in autoimmune disease and tumour immunity. Nat Rev Immunol 3:211–222

    Article  PubMed  CAS  Google Scholar 

  4. Mars LT, Novak J, Liblau RS, Lehuen A (2004) Therapeutic manipulation of NKT cells in autoimmunity: modes of action and potential risks. Trends Immunol 25:471–476

    Article  PubMed  CAS  Google Scholar 

  5. Kronenberg M (2005) Toward an understanding of NKT cell biology: progress and paradoxes. Annu Rev Immunol 26:877–900

    Article  CAS  Google Scholar 

  6. Kaer LV (2005) α-Galactosylceramide therapy for autoimmune diseases: prospects and obstacles. Nat Rev Immunol 5:31–42

    Article  PubMed  CAS  Google Scholar 

  7. Yu KOA, Porcelli SA (2005) The diverse functions of CD1d-restricted NKT cells and their potential for immunotherapy. Immmunol Lett 100:42–55

    Article  CAS  Google Scholar 

  8. Cardell SL (2005) The natural killer T lymphocyte: a player in the complex regulation of autoimmune diabetes in non-obese diabetic mice. Clin Exp Immmunol 143:197–202

    Google Scholar 

  9. Mars LT, Laloux V, Goude K, Desbois S, Saoudi A, Van Kaer L, Lassmann H, Herbelin A, Lehuen A, Liblau RS (2002) Vα14-Jα281. NKT cells naturally regulate experimental autoimmune encephalomyelitis in nonobese diabetic mice. J Immunol 168:6007–6011

    PubMed  CAS  Google Scholar 

  10. Teige A, Teiga I, Savasani S, Bockermann R, Mondoc E, Holmdahl R, Issazadel-Navikas S (2004) CD1-dependent regulation of chronic central nervous system inflammation in experimental autoimmune encephalomyelitis. J Immunol 172:186–194

    PubMed  CAS  Google Scholar 

  11. Singh AK, Wilson MT, Hong S, Oliveres-Villagomez D, Du C, Stanic AK, Joyce S, Siriam S, Koezka Y, Van Kaer L (2001) Natural killer T cell activation protects mice against experimental autoimmune encephalomyelitis. J Exp Med 194:1801–1811

    Article  PubMed  CAS  Google Scholar 

  12. Furlan R, Bergami A, Cantarella D, Brambilla E, Taniguchi M, Dellabona P, Casorati G, Martino G (2003) Activation of invariant NKT cells by αGalCer administration protects mice from MOG35–55-induced EAE: critical roles for administration route and IFN-γ. Eur J Immunol 33:1830–1838

    Article  PubMed  CAS  Google Scholar 

  13. Jahng AW, Maricic I, Pedersen B, Burdin N, Naidenko O (2001) Activatin of natural killer T cells potentiates or prevents experimental autoimmune encephalomyelitis. J Exp Med 194:1789–1799

    Article  PubMed  CAS  Google Scholar 

  14. Pal E, Tabira T, Kawano T, Taniguchi M, Miyake S, Yamamura T (2001) Costimulation-dependent modulation of experimental autoimmune encephalomyelitis by ligand stimulation of Vα 14 NKT cells. J Immunol 166:662–668

    PubMed  CAS  Google Scholar 

  15. Miyamoto K, Miyake S, Yamamura T (2001) A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing Th2 bias of natural killer T cells. Nature 413:531–534

    Article  PubMed  CAS  Google Scholar 

  16. Oki S, Chiba A, Yamamura T, Miyake S (2004) The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J Clin Inv 113:1631–1640

    Article  CAS  Google Scholar 

  17. Goff RD, Gao Y, Mattner J, Zhou D, Yin N, Cantu C, Teyton L, Bendelac A, Savage PB (2004) Effects of lipid chain lengths in α-galactosylceramides on cytokine release by natural killer T ells. J Am Chem Soc 126:13602–13603

    Article  PubMed  CAS  Google Scholar 

  18. Oki S, Tomi C, Yamamura T, Miyake S (2005) Preferential Th2 polarization by OCH is supported by incompetent NKT cell induction of CD40L and following production of inflammatory cytokines by bystander cells in vivo. Int Immunol 17:1619–1629

    Article  PubMed  CAS  Google Scholar 

  19. Gombert JM, Herbelin A, Tancrede-Bohin E, Dy M, Carnaud C, Bach JF (1996) Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 126:2989–2998

    Article  Google Scholar 

  20. Falcone M, Yeung B, Tucker L, Rodriguez E, Sarvetnick N (1999) A defect in interleukin 12-induced activation and interferon gamma secretion of peripheral natural killer T cells in nonobese diabetic mice suggests new pathogenic mechanisms for insulin-dependent diabetes mellitus. J Exp Med 190:963–972

    Article  PubMed  CAS  Google Scholar 

  21. Godfrey DI, Kinder SJ, Silvera P, Baxter AG (1997) Flow cytometric study of T cell development in NOD mice reveals a deficiency in alpha-beta TCR+CDR-CD8-tymocytes. J Autoimmun 10:279–285

    Article  PubMed  CAS  Google Scholar 

  22. Poulton LD, Smyth MJ, Hawke CG, Silveira P, Shepherd D, Naidenko OV, Godfrey DI, Baxter AG (2001) Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. Int Immunol 13:887–896

    Article  PubMed  CAS  Google Scholar 

  23. Shi FD, Flodstrom M, Balasa B, Kim SH, van Gunst K, Strominger JL, Wilson SB, Sarvetnick N (2001) Germ line deletion of the CD1 locus exacerbates diabetes in the NOD mouse. Proc Natl Acad Sci U S A 98:6777–6782

    Article  PubMed  CAS  Google Scholar 

  24. Naumov YN, Bahjat KS, Gausling R, Abraham R, Exley MA, Koezuka Y, Balk SB, Stominger JL, Clare-Salzer M, Wilson SB (2001) Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc Natl. Acad Sci U S A 98:13838–13843

    Article  PubMed  CAS  Google Scholar 

  25. Wang B, Geng Y-B, Wang C-R (2001) CD1-restrected NKT cells protect nonobese diabetic mice from developing diabetes. J Exp Med 194:313–320

    Article  PubMed  Google Scholar 

  26. Falcone M, Facciotti F, Ghidoli N, Monti P, Olivieri S, Zaccagnino L, Bonifacio E, Casorati G, Sanvito F, Sarventrick N (2004) Up-regulation of CD1d expression restores the immunoregulatory function of NKT cells and prevents autoimmune diabetes in nonobese diabetic mice. J Immunol 172:5908–5916

    PubMed  CAS  Google Scholar 

  27. Hammond KJL, Poulton LD, Almisano LJ, Silveira PA, Godrey DI, Bazter AG (1998) α/β-T cell receptor (TCR)+ CD4CD8 (NKT) thymocytes prevent insulin-dependent diabetes mellitus in nonobese diabetic (NOD)/Lt mice by the influence of interleukin (IL)-4 and/or IL-10. J Exp Med 187:1047–1056

    Article  PubMed  CAS  Google Scholar 

  28. Lehuen A, Lantz O, Beaudoin L, Laloux V, Carnaud C, Bendelac A, Bach J-F, Monteriro RC (1998) Overexpression of natural killer T cells protects Vα14-Jα18 transgenic nonobese diabetic mice against diabetes. J Exp Med 188:1831–1839

    Article  PubMed  CAS  Google Scholar 

  29. Hong S, Wilson MT, Serizawa I, Wu L, Singh N, Naidenko OV, Miura T, Haba T, Scherer DC, Wei J, Kronenberg M, Koezuka Y, Van Kaer L (2001) The natural killer T-cell ligand α-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat Med 7:1052–1056

    Article  PubMed  CAS  Google Scholar 

  30. Sharif S, Arreaza GA, Zucker P, Mi Q-S, Sondhi J, Naidenko OV, Kronenberg M, Koezuka Y, Delovitch TL, Gombert J-M, Leite-de-Moraes M, Gouarin C, Zhu R, Hameg A, Nakayama T, Taniguchi M, Lepault F, Lehuen A, Bach J-F, Herbelin A (2001) Activation of natural killer T cells by α-galactosylceramide treatment prevents the onset and recurrence of autoimmune tye1 diabetes. Nat Med 7:1057–1062

    Article  PubMed  CAS  Google Scholar 

  31. Mizuno M, Masumura M, Tomi C, Chiba A, Oki S, Yamamura T, Miyake S (1997) Synthetic glycolipid OCH prevents insulitis and diabetes in NOD mice. J Autoimmun 10:279–285

    Article  Google Scholar 

  32. Laloux V, Beaudoin L, Jeske D, Carnaud C, Lehuen A (2001) NKT cell-induced protection against diabetes in Vα14-Jα281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen. J Immunol 166:3749–3756

    PubMed  CAS  Google Scholar 

  33. Beaudoin L, Laloux V, Novak J, Lucas B, Lehuen A (2002) NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity 17:725–736

    Article  PubMed  CAS  Google Scholar 

  34. Novak J, Beaudoin L, Griseri T, Lehuen A (2005) Inhibition of T cells differentiation into effectors by NKT cells requires cell contacts. J Immunol 174:1954–1961

    PubMed  CAS  Google Scholar 

  35. Chen YG, Choisy-Rossi CM, Holl TM, Champan HD, Besra GS, Porcelli SA, Shaffer DJ, Roopenian D, Wilson SB, Serreze DV (2005) Activated NKT cells inhibit autoimmune diabetes through tolerogenic recruitment of dendritic cells to pancreatic lymph nodes. J Immunol 174:1196–1204

    PubMed  CAS  Google Scholar 

  36. Griseri T, Beaudoin L, Novak J, Mars LT, Lepault F, Liblau R, Lehuen A (2005) Invariant NKT cells exacerbate type 1 diabetes induced by CD8 T cells. J Immunol 175:2091–2101

    PubMed  CAS  Google Scholar 

  37. Chiba A, Kaieda S, Oki S, Yamamura T, Miyake S (2005) The involvement of Vα14 natural killer T cells in the pathogenesis of murine models of arthritis. Arthritis Rheum 52:1941–1948

    Article  PubMed  CAS  Google Scholar 

  38. Brigl M, Bry L, Kent SC, Gumperz JE, Brenner MB (2003) Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat Immunol 4:1230–1237

    Article  PubMed  CAS  Google Scholar 

  39. Chiba A, Oki S, Miyamoto K, Hashimoto H, Yamamura T, Miyake S (2004) Suppression of collagen-induced arthritis by natural killer activation with OCH, a sphingosine-truncated analog of α-galactosylceramide. Arthritis Rheum 50:305–313

    Article  PubMed  CAS  Google Scholar 

  40. Ohnishi Y, Tsutsumi A, Goto D, Itoh S, Matsumoto I, Taniguchi M, Sumida T (2005) TCRVα14+ natural killer T cell function and effector T cells in mice with collagen-induced arthritis. Clin Exp Immunol 141:47–53

    Article  PubMed  CAS  Google Scholar 

  41. Kim HY, Kim HJ, Min HS, Park ES, Park SH, Chung DH (2005) NKT cells promote antibody-induced arthritis by suppressing transforming growth β1 production. J Exp Med 201:41–47

    Article  PubMed  CAS  Google Scholar 

  42. Korganow AS, Ji H, Mangialaio S, Dchatelle V, Pelanda R, Martin T, Degott C, Kikutani H, Rajewsky K, Pasquali JL, Benoist C, Mathis D (1999) From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 10:451–461

    Article  PubMed  CAS  Google Scholar 

  43. Terato K, Hasty KA, Reife RA, Cremer MA, Kang H, Stuart JM (1992) Induction of arthritis with monoclonal antibodies to collagen. J Immunol 148:2103–2108

    PubMed  CAS  Google Scholar 

  44. Brandes ME, Allen JB, Ogawa Y, Wahl SM (1991) Transforming growth factor β1 suppresses acute and chronic arthritis in experimental animals. J Clin Invest 87:1108–1113

    Article  PubMed  CAS  Google Scholar 

  45. Kuruvilla AP, Shah R, Hochwald GM, Liggitt HD, Palladino MA et al (1991) Protective effect of transforming growth factor β1 on experimental autoimmune diseases in mice. Proc Natl Acad Sci U S A 88:2918–2921

    Article  PubMed  CAS  Google Scholar 

  46. Thorbecke GJ, Shah R, Leu CH, Kuruvilla AP, Hardison AM et al (1992) Involvement of endogenous tumor necrosis factor alpha and transforming growth factor β during induction of collagen type II arthritis in mice. Proc Natl Acad Sci U S A 189:7375–7379

    Article  Google Scholar 

  47. Takeda K, Dennert G (1993) The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation B cell immunoglobulin secretion, and autoimmune symptoms. J Exp Med 177:155–164

    Article  PubMed  CAS  Google Scholar 

  48. Mieza MA, Itoh T, Cui JQ, Makino Y, Kawano T, Tsuchida K, Koike AT, Shirai T, Yagita H, Matsuzawa A, Koseki H, Taniguchi M (1996) Selective reduction of Vα14+ NKT cells associated with disease development in autoimmune-prone mice. J Immunol 156:4035–4040

    PubMed  CAS  Google Scholar 

  49. Yang J-Q, Saxena V, Xu H, Van Kaer L, Wang C-R, Singh RR (2003) Immunoregulatory role of CD1d in the hydrocarbon oil-induced model of lupus nephritis. J Immunol 171:4439–4446

    PubMed  CAS  Google Scholar 

  50. Yang JQ, Singh AK, Wilson MT, Satoh M, Stanic AK, Par J-J, Hong S, Gadola SD, Mizutani A, Kakumanu SR, Reeves W, Cerundolo V, Joyce S, Van Kaer L, Singh RR (2003) Repeated α-galactosylceramide administration results in expansion of NKT cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J Immunol 171:2142–2153

    PubMed  CAS  Google Scholar 

  51. Chan OTM, Paliwal V, Mcniff JM, Park SH, Bendelac A, Schlomchik MJ (2001) Deficiency in β2-microglobulin, but not CD1, accelerates spontaneous lupus skin disease while inhibiting nephritis in MRL-Faslpr mice: an example of disease regulation at the organ level. J Immunol 167:2985–2990

    PubMed  CAS  Google Scholar 

  52. Yang JQ, Saxena V, Xu H, van Kaer L, Wang C-R, Singh RR (2003) Repeated α-galactosylceramide administration results in expansion of NKT cells and alleviates inflammatory dermatitis in MRL-lpr/lpr mice. J Immunol 171:4439–4446

    PubMed  CAS  Google Scholar 

  53. Singh AK, Yang JQ, Parekh VV, Wei J, Wang CR, Joyce S, Singh RR, van Kaer L (2005) The natural killer T cell ligand α-galactosylceramide prevents or promotes pristine-induced lupus in mice. Eur J Immunol 35:1143–1154

    Article  PubMed  CAS  Google Scholar 

  54. Morshe SRM, Mannoor K, Halder RC, Kawamura H, Bannai M, Sekikawa H, Watanabe H, Abo T (2002) Tissue-specific expansion of NTK and CD5+B cells at the onset of autoimmune disease in (NZB x NZW)F1 mice. Eur J Immunol 32:2551–2561

    Article  Google Scholar 

  55. Firestier C, Molano A, Im JS, Dutronc Y, Diamond B, Davidson A, Illarionov PA, Besra GS, Porcelli SA (2005) Expansion and hyperactivity of CD1d-restricted NKT cells during the progression of systemic lupus erythematosus in (New Zealand Black x New Zealand White) F1 mice. J Immunol 175:763–770

    Google Scholar 

  56. Zeng D, Liu Y, Sidobre S, Kronenberh M, Strober S (2003) Activation of natural killer T cells in NZB/W mice induces Th1-type immune responses exacerbating lupus. J Clin Invest 112:1211–1222

    Article  PubMed  CAS  Google Scholar 

  57. Saubermann LJ, Beck P, Jong YPD, Pitman RS, Ryan MS, Kim HS, Exley M, Snapper S, Balk SP, Hagen SJ, Kanauchi O, Motoki K, Sakai T, Terhorst C, Koezuka Y, Podolsky DK, Blumerg RS (2000) Activation of natural killer T cells by α-galactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology 119:119–128

    Article  PubMed  CAS  Google Scholar 

  58. Ueno Y, Tanaka S, Sumi M, Miyake S, Tazuma S, Taniguchi M, Yamamura T, Chyayama K (2005) Single dose of OCH improves mucosal T helper type 1/T helper type 2 cytokine balance and prevents experimental colitis in the presence of Vα14 natural killer T cells in mice. Inflamm Bowel Dis 11:35–41

    Article  PubMed  Google Scholar 

  59. Heller F, Fuss IJ, Nieuwenhuis EE, Blumberg RS, Strober W (2002) Oxazolone colitis, a Th2 colitis model resembling ulcerative colitis, is mediated by IL-13-producing NK-T cells. Immunity 17:629–638

    Article  PubMed  CAS  Google Scholar 

  60. Sumida T, Sakamoto A, Murata H, Makino Y, Takahashi H, Yoshida S, Nishioka K, Iwamoto I, Taniguchi M (1995) Selective reduction of T cells bearing invariant Vαa24 JαQ antigen receptor in patients with systemic sclerosis. J Exp Med 182:1163–1168

    Article  PubMed  CAS  Google Scholar 

  61. Wilson SB, Kent SC, Patton KT, Orban T, Jackson RA, Exley M, Porcelli S, Schatz DA, Atkinson MA, Balk SP, Strominger JL, Hafler DA (1998) Extreme Th1 bias of invariant Vα24 JαQT cells in type 1 diabetes. Nature 391:177–181

    Article  PubMed  CAS  Google Scholar 

  62. Kukreja A, Cost G, Marker J, Zhang C, Sun Z, Lin-Su K, Ten S, Sanz M, Exley M, Wilson B, Porcelli S, Maclaren N (2002) Multiple immuno-regulatory defects in type-1 diabetes. J Clin Invest 109:131–140

    Article  PubMed  CAS  Google Scholar 

  63. Illes Z, Kondo T, Newcombe J, Oka N, Tabira T, Yamamura T (2000) Differential expression of NKT cell Vα24JαQ invariant TCR chain in the lesions of multiple sclerosis and chronic inflammatory demyelinating polyneuropathy. J Immunol 164:4375–4381

    PubMed  CAS  Google Scholar 

  64. Araki M, Kondo T, Gumperz JE, Brenner MB, Miyake S, Yamamura T (2003) Th2 bias of CD4+ NKT cells derived from multiple sclerosis in remission. Int Immunol 15:279–288

    Article  PubMed  CAS  Google Scholar 

  65. Demoulins T, Gachelin G, Bequet D, Dormont D (2003) A biased Vα24+ T-cell repertoire leads to circulating NKT-cell defects in a multiple sclerosis patient at the onset of his disease. Immunol Lett 90:223–228

    Article  PubMed  CAS  Google Scholar 

  66. Oishi Y, Sumida T, Sakamoto A, Kita Y, Kurasawa K, Nawata Y, Takabayashi K, Takahashi H, Yoshida S, Taniguchi M, Saito Y, Iwamoto I (2001) Selective reduction and recovery of invariant Vα24JαQT cell receptor T cells in correlation with disease activity in patients with systemic lupus erythematosus. J Rheumatol 28:275–283

    PubMed  CAS  Google Scholar 

  67. Kojo S, Adachi Y, Keino H, Taniguchi M, Sumida T (2001) Dysfunction of T cell receptor AV24AJ18+, BV11+ double-negative regulatory natural killer T cells in autoimmune diseases. Arthritis Rheum 44:1127–1138

    Article  PubMed  CAS  Google Scholar 

  68. Van der Vliet HJ, von Blomberg BM, Nishi N, Reijm M, Voskuyl AE, van Bodegraven AA, Polman CH, Rustemeyer T, Lips P, van den Eertwegh AJ, Giaccone G, Scheper RJ, Pinedo HM (2001) Circulating Vα24+ Vβ11+ NKT cell numbers are decreased in a wide variety of diseases that are characterized by autoreactive tissue damage. Clin Immunol 100:144–148

    Article  PubMed  Google Scholar 

  69. Lee PT, Putnam A, Benlagha K, Teyton L, Gottlieb PA, Bendelac A (2002) Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 110:793–800

    Article  PubMed  CAS  Google Scholar 

  70. Oikawa Y, Shimada A, Yamada S, Motohashi Y, Nakagawa Y, Irie J, Maruyama T, Saruta T (2002) High frequency of Vα24+ Vβ11+ T-cells observed in type 1 diabetes. Diabetes Care 25:1818–1823

    Article  PubMed  Google Scholar 

  71. Gumperz JE, Miyake S, Yamamura T, Brenner MB (2002) Functionally distinct subsets of CD1d-restricted natural killer T cells revealed by CD1d tetramer staining. J Exp Med 195:625–636

    Article  PubMed  CAS  Google Scholar 

  72. Lee PT, Benlagha K, Teyton L, Bendelac A (2002) Distinct functional lineages of human Vα24 natural killer T cells. J Exp Med 195:637–641

    Article  PubMed  CAS  Google Scholar 

  73. Kent SC, Chen Y, Clemmings SM, Viglietta V, Kenyon NS, Ricordi C, Hering B, Hafler DA (2005) Loss of IL-4 secretion from human type 1a diabetic pancreatic draining lymph node NKT cells. J Immunol 175:4458–4464

    PubMed  CAS  Google Scholar 

  74. Zhou D, Mattner J, Cantu C 3rd, Schrantz N, Yin N, Gao Y, Sagiv Y, Hudspeth K, Wu YP, Yamashita T, Teneberg S, Wang D, Proia RL, Levery SB, Savage PB, Teyton L, Bendelac A (2004) Lysosomal glycosphingolipid recognition by NKT cells. Science 306:1786–1789

    Article  PubMed  CAS  Google Scholar 

  75. Kaleda S, Tom C, Oki S, Yamamura T, Miyake S (2007) Activation of iNKT cells by synthetic glycolipid ligands supresses autoantibody-induced arthritis. Arthritis Rheum (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Miyake, S., Yamamura, T. (2007). NKT Cells and Autoimmune Diseases: Unraveling the Complexity. In: Moody, D.B. (eds) T Cell Activation by CD1 and Lipid Antigens. Current Topics in Microbiology and Immunology, vol 314. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69511-0_10

Download citation

Publish with us

Policies and ethics