Skip to main content
Book cover

Measles pp 213–241Cite as

Measles Virus for Cancer Therapy

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 330))

Measles virus offers an ideal platform from which to build a new generation of safe, effective oncolytic viruses. Occasional so-called spontaneous tumor regressions have occurred during natural measles infections, but common tumors do not express SLAM, the wild-type MV receptor, and are therefore not susceptible to the virus. Serendipitously, attenuated vaccine strains of measles virus have adapted to use CD46, a regulator of complement activation that is expressed in higher abundance on human tumor cells than on their nontransformed counterparts.For this reason, attenuated measles viruses are potent and selective oncolytic agents showing impressive antitumor activity in mouse xenograft models. The viruses can be engineered to enhance their tumor specificity, increase their antitumor potency, and facilitate noninvasive in vivo monitoring of their spread. A major impediment to the successful deployment of oncolytic measles viruses as anticancer agents is the high prevalence of preexisting anti-measles immunity, which impedes bloodstream delivery and curtails intratumoral virus spread. It is hoped that these problems can be addressed by delivering the virus inside measles-infected cell carriers and/or by concomitant administration of immunosuppressive drugs. From a safety perspective, population immunity provides an excellent defense against measles spread from patient to carers and, in 50 years of human experience, reversion of attenuated measles to a wild-type pathogenic phenotype has not been observed. Clinical trials testing oncolytic measles viruses as an experimental cancer therapy are currently underway.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aghi M, Martuza RL (2005) Oncolytic viral therapies—the clinical experience. Oncogene 24:7802–7816

    Article  PubMed  CAS  Google Scholar 

  • Aisenberg AC, Davis C (1968) The thymus and recovery from cyclophosphamide-induced tolerance to sheep erythrocytes. J Exp Med 128:35–46

    Article  PubMed  CAS  Google Scholar 

  • Aldous IR, Kirman BH, Butler N, et al (1961) Vaccination against measles. III. Clinical trial in British children. BMJ 2(5262):1250–1253

    PubMed  CAS  Google Scholar 

  • Allen C, Vongpungsawad S, Nakamura T, et al (2006) Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity. Cancer Res 66:11840–11850

    Article  PubMed  CAS  Google Scholar 

  • Allen C, Paraskevakou G, Liu C, et al (2008) Oncolytic measles virus strains in the treatment of gliomas. Expert Opin Biol Ther 8:213–220

    Article  PubMed  CAS  Google Scholar 

  • Anderson BD, Nakamura T, Russell SJ, et al (2004) High CD46 receptor density determines preferential killing of tumor cells by oncolytic measles virus. Cancer Res 64:4919–4926

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (1996) Measles pneumonitis following measles-mumps-rubella vaccination of a patient with HIV infection. MMWR Morb Mortal Wkly Rep 45:603–606

    Google Scholar 

  • Asada T (1974) Treatment of human cancer with mumps virus. Cancer 34:1907–1928

    Article  PubMed  CAS  Google Scholar 

  • Audet S, Virata-Theimer ML, Beeler MJ, et al (2006) Measles-virus-neutralizing antibodies in intravenous immunoglobulins. J Infect Dis 194:781–789

    Article  PubMed  CAS  Google Scholar 

  • Auwaerter PG, Rota PA, Elkins WR, et al (1999) Measles virus infection in rhesus macaques: altered immune responses and comparison of the virulence of six different virus strains. J Infect Dis 180:950–958

    Article  PubMed  CAS  Google Scholar 

  • Bajzer Z, Carr T, Josic K, et al (2008) Modeling of cancer virotherapy with recombinant measles viruses. J Theor Biol 252:109–122

    Article  PubMed  Google Scholar 

  • Balachandran S, Barber GN (2007) PKR in innate immunity, cancer, and viral oncolysis. Methods Mol Biol 383:277–301

    Article  PubMed  CAS  Google Scholar 

  • Bankamp B, Hodge G, McChesney MB, et al (2008) Genetic changes that affect the virulence of measles virus in a rhesus macaque model. Virology 373:39–50

    Article  PubMed  CAS  Google Scholar 

  • Basler CF, Garcia-Sastre A (2002) Viruses and the type I interferon antiviral system: induction and evasion. Int Rev Immunol 21:305–337

    Article  PubMed  CAS  Google Scholar 

  • Bjorge L, Hakulinen J, Walström T, et al (1997) Complement-regulatory proteins in ovarian malignancies. Int J Cancer 70:14–25

    Article  PubMed  CAS  Google Scholar 

  • Blechacz B, Splinter PL, Greiner S, et al (2006) Engineered measles virus as a novel oncolytic viral therapy system for hepatocellular carcinoma. Hepatology 44:1465–1477

    Article  PubMed  CAS  Google Scholar 

  • Blok VT, Daha MR, Tijsma O, et al (2000) A possible role of CD46 for the protection in vivo of human renal tumor cells from complement-mediated damage. Lab Invest 80:335–344

    PubMed  CAS  Google Scholar 

  • Bluming A, Ziegler J (1971) Regression of Burkitt's lymphoma in association with measles infection. Lancet 2:105–106

    Article  PubMed  CAS  Google Scholar 

  • Bucheit AD, Kumar S, Grote DM, et al (2003) An oncolytic measles virus engineered to enter cells through the CD20 antigen. Mol Ther 7:62–72

    Article  PubMed  CAS  Google Scholar 

  • Campbell SA, Gromeier M (2005a) Oncolytic viruses for cancer therapy. I. Cell-external factors: virus entry and receptor interaction. Onkologie 28:144–149

    Article  Google Scholar 

  • Campbell SA, Gromeier M (2005b) Oncolytic viruses for cancer therapy. II. Cell-internal factors for conditional growth in neoplastic cells. Onkologie 28:209–215

    Article  CAS  Google Scholar 

  • Carlson SK, Classic KL, Hadac EM, et al (2006) In vivo quantitation of intratumoral radioisotope uptake using micro-single photon emission computed tomography/computed tomography. Mol Imaging Biol 8:324–332

    Article  PubMed  Google Scholar 

  • Cocks BG, Chang CC, Carballido JM, et al (1995) A novel receptor involved in T-cell activation.Nature 376(6537):260–263

    Article  PubMed  CAS  Google Scholar 

  • Collard P, Hendrickse RG, Montefiore D, et al (1961) Vaccination against measles. II. Clinical trial in Nigerian children. BMJ 2(5262):1246–1250

    PubMed  CAS  Google Scholar 

  • Dadachova E, Carrasco N (2004) The Na/I symporter (NIS): imaging and therapeutic applications. Semin Nucl Med 34:23–31

    Article  PubMed  Google Scholar 

  • Devaux P, von Messling V, Songsungthong W, et al (2007) Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 360:72–83

    Article  PubMed  CAS  Google Scholar 

  • Dingli D, Diaz RM, Bergert ER, et al (2003) Genetically targeted radiotherapy for multiple myeloma. Blood. 102:489–496

    Article  PubMed  CAS  Google Scholar 

  • Dingli D, Peng KW, Harvey ME, et al (2004) Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 103:1641–1646

    Article  PubMed  CAS  Google Scholar 

  • Dingli D, Kemp BJ, O'Connor MK, et al (2005a) Combined I-124 positron emission tomography/ computed tomography imaging of NIS gene expression in animal models of stably transfected and intravenously transfected tumor. Mol Imaging Biol 8:16–23

    Article  Google Scholar 

  • Dingli D, Peng KW, Harvey ME, et al (2005b) Interaction of measles virus vectors with Auger electron emitting radioisotopes. Biochem Biophys Res Commun 337:22–29

    Article  CAS  Google Scholar 

  • Dingli D, Cascino MD, Josic K, et al (2006) Mathematical modeling of cancer radiovirotherapy. Math Biosci 199:55–78

    Article  PubMed  Google Scholar 

  • Dorig RE, Marcil A, Chropa A, et al (1993) The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305

    Article  PubMed  CAS  Google Scholar 

  • Durrant LG, Spendlove I (2001) Immunization against tumor cell surface complement-regulatory proteins. Curr Opin Investig Drugs 2:959–966

    PubMed  CAS  Google Scholar 

  • Enders JF, Peebles TC (1954) Propagation in tissue cultures of cytopathogenic agents from patients with measles. Proc Soc Exp Biol Med 86:277–286

    PubMed  CAS  Google Scholar 

  • Enders JF, Katz SL, Milovanovic MV, et al (1960) Studies on an attenuated measles-virus vaccine. I. Development and preparations of the vaccine: technics for assay of effects of vaccination. N Engl J Med 263:153–159

    PubMed  CAS  Google Scholar 

  • Fishelson Z, Donin N, Zell S, et al (2003) Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors. Mol Immunol 40:109–123

    Article  PubMed  CAS  Google Scholar 

  • Fisher K (2006) Striking out at disseminated metastases: the systemic delivery of oncolytic viruses. Curr Opin Mol Ther 8:301–313

    PubMed  CAS  Google Scholar 

  • Forsyth P, Roldan G, George D, et al (2008) A phase I trial of intratumoral administration of reo-virus in patients with histologically confirmed recurrent malignant gliomas. Mol Ther 16:627–632

    Article  PubMed  CAS  Google Scholar 

  • Goffe AP, Laurence GD (1961) Vaccination against measles. I. Preparation and testing of vaccines consisting of living attenuated virus. BMJ 2(5262):1244–1246

    PubMed  CAS  Google Scholar 

  • Gorter A, Blok VT, Haasnoot WH, et al (1996) Expression of CD46, CD55, and CD59 on renal tumor cell lines and their role in preventing complement-mediated tumor cell lysis. Lab Invest 74:1039–1049

    PubMed  CAS  Google Scholar 

  • Gotoh B, Komatsu T, Takeuchi K, et al (2001) Paramyxovirus accessory proteins as interferon antagonists. Microbiol Immunol 45:787–800

    PubMed  CAS  Google Scholar 

  • Griffin D (2001) Measles virus. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman B, Straus SE (eds) Fields virology, 5th edn, Lippincott Williams ' Wilkins, Philadelphia, pp 1551–1585

    Google Scholar 

  • Griffin DE, Pan CH, Moss WJ (2008) Measles vaccines. Front Biosci 13:1352–1370

    Article  PubMed  CAS  Google Scholar 

  • Grote D, Russell SJ, Cornu TI, et al (2001) Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 97:3746–3754

    Article  PubMed  CAS  Google Scholar 

  • Hadac EM, Peng KW, Nakamura T, et al (2004) Reengineering paramyxovirus tropism. Virology 329:217–225

    Article  PubMed  CAS  Google Scholar 

  • Hallak LK, Merchen JR, Storgard CM, et al (2005) Targeted measles virus vector displaying Echistatin infects endothelial cells via alpha(v)beta3 and leads to tumor regression. Cancer Res 65:5292–5300

    Article  PubMed  CAS  Google Scholar 

  • Hammond AL, Plemper RK, Zhang J, et al (2001) Single-chain antibody displayed on a recom-binant measles virus confers entry through the tumor-associated carcinoembryonic antigen. J Virol 75:2087–2096

    Article  PubMed  CAS  Google Scholar 

  • Hangartner L, Zinkernagel RM, Hengartner H (2006) Antiviral antibody responses: the two extremes of a wide spectrum. Nat Rev Immunol 6:231–243

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Suzuki Y, Semba T, et al (1995) High expression of membrane cofactor protein of complement (CD46) in human leukaemia cell lines: implication of an alternatively spliced form containing the STA domain in CD46 up-regulation. Scand J Immunol 42:581–590

    Article  PubMed  CAS  Google Scholar 

  • Haralambieva I, Iankov I, Hasegawa K, et al (2007) Engineering oncolytic measles virus to circumvent the intracellular innate immune response. Mol Ther 15:588–597

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa K, Nakamura T, Harvey M, et al (2006a) The use of a tropism-modified measles virus in folate receptor-targeted virotherapy of ovarian cancer. Clin Cancer Res 12:6170–6178

    Article  CAS  Google Scholar 

  • Hasegawa K, Pham L, O'Connor MK, et al (2006b) Dual therapy of ovarian cancer using measles viruses expressing carcinoembryonic antigen and sodium iodide symporter. Clin Cancer Res 12:1868–1875

    Article  CAS  Google Scholar 

  • Hasegawa K, Hu C, Nakamura T, et al (2007) Affinity thresholds for membrane fusion triggering by viral glycoproteins. J Virol 81:13149–13157

    Article  PubMed  CAS  Google Scholar 

  • Heinzerling L, Künzi V, Oberholzer PA, et al (2005) Oncolytic measles virus in cutaneous T-cell lymphomas mounts antitumor immune responses in vivo and targets interferon-resistant tumor cells. Blood. 106:2287–2294

    Article  PubMed  CAS  Google Scholar 

  • Hermiston T (2006) A demand for next-generation oncolytic adenoviruses. Curr Opin Mol Ther 8:322–330

    PubMed  CAS  Google Scholar 

  • Hill DL (1975) Pharmacology. In: Thomas CC (ed) A review of cyclophosphamide. Thomas Publishers, Springfield, IL pp 60–85

    Google Scholar 

  • Hoffmann D, Bangan JM, Bayer W, et al (2006) Synergy between expression of fusogenic membrane proteins, chemotherapy and facultative virotherapy in colorectal cancer. Gene Ther 13:1534–1544

    Article  PubMed  CAS  Google Scholar 

  • Hoster HA, Zanes RP Jr, Von Haam E (1949) Studies in Hodgkin's syndrome; the association of viral hepatitis and Hodgkin's disease: a preliminary report. Cancer Res 9:473–480

    PubMed  CAS  Google Scholar 

  • Hsu EC, Dörig RE, Sarangi F, et al (1997) Artificial mutations and natural variations in the CD46 molecules from human and monkey cells define regions important for measles virus binding. J Virol 71:6144–6154

    PubMed  CAS  Google Scholar 

  • Hsu EC, Sarangi F, Iorio C, et al (1998) A single amino acid change in the hemagglutinin protein of measles virus determines its ability to bind CD46 and reveals another receptor on marmoset B cells. J Virol 72:2905–2916

    PubMed  CAS  Google Scholar 

  • Huebner RJ, Rowe WP, Schatten WE, et al (1956) Studies on the use of viruses in the treatment of carcinoma of the cervix. Cancer 9:1211–1218

    Article  PubMed  CAS  Google Scholar 

  • Iankov ID, Blechacz B, Liu C, et al (2007) Infected cell carriers: a new strategy for systemic delivery of oncolytic measles viruses in cancer virotherapy. Mol Ther 15:114–122

    Article  PubMed  CAS  Google Scholar 

  • Jacobson DR, Zolla-Pazner S (1986) Immunosuppression and infection in multiple myeloma. Semin Oncol 13:282–290

    PubMed  CAS  Google Scholar 

  • Juhl H, Helmig F, Baltzer K, et al (1997) Frequent expression of complement resistance factors CD46, CD55, and CD59 on gastrointestinal cancer cells limits the therapeutic potential of monoclonal antibody 17–1A. J Surg Oncol 64:222–230

    Article  PubMed  CAS  Google Scholar 

  • Katz SL (1965) Immunization with live attenuated measles virus vaccines: five years' experience. Arch Gesamte Virusforsch 16:222–230

    Article  PubMed  CAS  Google Scholar 

  • Katz S (1996) The history of measles virus and the development and utilization of measles virus vaccines. In: Plotkins S, Fantini B (eds) Vaccinia, vaccination and vaccinology: Jenner Pasteur and their successors. Elsevier, Paris, pp 265–270

    Google Scholar 

  • Katz SL, Kempe CH, Black FL, et al (1960) Studies on an attenuated measles-virus vaccine. VIII. General summary and evaluation of the results of vaccine. N Engl J Med 263:180–184

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann M, Lindner P, Honegger A, et al (2002) Crystal structure of the anti-His tag antibody 3D5 single-chain fragment complexed to its antigen. J Mol Biol 318:135–147

    Article  PubMed  CAS  Google Scholar 

  • Kelly E, Russell SJ (2007) History of oncolytic viruses: genesis to genetic engineering. Mol Ther 15:651–659

    Article  PubMed  CAS  Google Scholar 

  • Kemper C, Leung M, Stephensen CB, et al (2001) Membrane cofactor protein (MCP; CD46) expression in transgenic mice. Clin Exp Immunol 124:180–189

    Article  PubMed  CAS  Google Scholar 

  • Kinoh H, Inoue M (2008) New cancer therapy using genetically-engineered oncolytic Sendai virus vector. Front Biosci 13:2327–2334

    Article  PubMed  CAS  Google Scholar 

  • Kinugasa N, Higashi T, Nouso K, et al (1999) Expression of membrane cofactor protein (MCP, CD46) in human liver diseases. Br J Cancer 80:1820–1825

    Article  PubMed  CAS  Google Scholar 

  • Klasse PJ, Sattentau QJ (2002) Occupancy and mechanism in antibody-mediated neutralization of animal viruses. J Gen Virol 83:2091–2108

    PubMed  CAS  Google Scholar 

  • Kobune F, Sakata H, Sugiura A (1990) Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J Virol 64:700–705

    PubMed  CAS  Google Scholar 

  • Kobune F, Takahashi H, Terao K, et al (1996) Nonhuman primate models of measles. Lab Anim Sci 46:315–320

    PubMed  CAS  Google Scholar 

  • Lecouturier V, Fayolle J, Caballero M, et al (1996) Identification of two amino acids in the hemag-glutinin glycoprotein of measles virus (MV) that govern hemadsorption HeLa cell fusion, and CD46 downregulation: phenotypic markers that differentiate vaccine and wild-type MV strains. J Virol 70:4200–4204

    PubMed  CAS  Google Scholar 

  • Lichty BD, Power AT, Stojdl DF, et al (2004) Vesicular stomatitis virus: re-inventing the bullet. Trends Mol Med 10:210–216

    Article  PubMed  CAS  Google Scholar 

  • Liszewski MK, Atkinson JP (1992) Membrane cofactor protein. Curr Top Microbiol Immunol 178:45–60

    PubMed  CAS  Google Scholar 

  • Liu TC, Galanis E, Kirn D (2007) Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol 4:101–117

    Article  PubMed  CAS  Google Scholar 

  • Lorence RM, Roberts MS, O'Neil JD, et al (2007) Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Curr Cancer Drug Targets 7:157–167

    Article  PubMed  CAS  Google Scholar 

  • Manchester M, Rall GF (2001) Model systems: transgenic mouse models for measles pathogene-sis. Trends Microbiol 9:19–23

    Article  PubMed  CAS  Google Scholar 

  • Mazzaferri EL, Kloos RT (2001) Clinical review 128: current approaches to primary therapy for papillary and follicular thyroid cancer. J Clin Endocrinol Metab 86:1447–1463

    Article  PubMed  CAS  Google Scholar 

  • McDonald CJ, Erlichman C, Ingle JM, et al (2006) A measles virus vaccine strain derivative as a novel oncolytic agent against breast cancer. Breast Cancer Res Treat 99:177–184

    Article  PubMed  CAS  Google Scholar 

  • McQuillan GM, Kruszon-Moran D, Hyde TB, et al (2007) Seroprevalence of measles antibody in the US population, 1999–2004. J Infect Dis 196:1459–1464

    Article  PubMed  Google Scholar 

  • Mota HC (1973) Infantile Hodgkin's disease: remission after measles. BMJ 2(5863):421

    PubMed  CAS  Google Scholar 

  • Mrkic B, Pavolvic J, Rülicke T, et al (1998) Measles virus spread and pathogenesis in genetically modified mice. J Virol 72:7420–7427

    PubMed  CAS  Google Scholar 

  • Mrkic B, Odermatt B, Klein MA, et al (2000) Lymphatic dissemination and comparative pathology of recombinant measles viruses in genetically modified mice. J Virol 74:1364–1672

    Article  PubMed  CAS  Google Scholar 

  • Munguia A, Ota T, Meist T, Russell SJ (2008) Cell carriers to deliver oncolytic viruses to sites of myeloma tumor growth. Gene Ther 15:797–806

    Article  PubMed  CAS  Google Scholar 

  • Murray KP, Mathure S, Kaul R, et al (2000) Expression of complement regulatory proteins-CD 35, CD 46, CD 55, and CD 59-in benign and malignant endometrial tissue. Gynecol Oncol 76:176–182

    Article  PubMed  CAS  Google Scholar 

  • Myers R, Greiner S, Harvey M, et al (2005) Oncolytic activities of approved mumps and measles vaccines for therapy of ovarian cancer. Cancer Gene Ther 12:593–599

    Article  PubMed  CAS  Google Scholar 

  • Myers RM, Greiner S, Harvey M, et al (2007) Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide. Clin Pharmacol Ther 82:700–710

    Article  PubMed  CAS  Google Scholar 

  • Nagy N, Maeda A, Bandobashi K, et al (2002) SH2D1A expression in Burkitt lymphoma cells is restricted to EBV positive group I lines and is downregulated in parallel with immunoblastic transformation. Int J Cancer 100:433–440

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Russell SJ (2004) Oncolytic measles viruses for cancer therapy. Expert Opin Biol Ther 4:1685–1692

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Peng KW, Vongpunsawad S, et al (2004) Antibody-targeted cell fusion. Nat Biotechnol 22:331–336

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Peng KW, Harvey M, et al (2005) Rescue and propagation of fully retargeted onco-lytic measles viruses. Nat Biotechnol 23:209–214

    Article  PubMed  CAS  Google Scholar 

  • Naniche D, Varior-Krishnan G, Cervoni F, et al (1993) Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 67:6025–6032

    PubMed  CAS  Google Scholar 

  • Naniche D, Yeh A, Eto D, et al (2000) Evasion of host defenses by measles virus: wild-type measles virus infection interferes with induction of alpha/beta interferon production. J Virol 74:7478–7484

    Article  PubMed  CAS  Google Scholar 

  • Newman W, Southam CM (1954) Virus treatment in advanced cancer; a pathological study of fifty-seven cases. Cancer 7:106–118

    Article  PubMed  CAS  Google Scholar 

  • Nielsen L, Blixenkrone-Møller M, Thylstrup M, et al (2001) Adaptation of wild-type measles virus to CD46 receptor usage. Arch Virol 146:197–208

    Article  PubMed  CAS  Google Scholar 

  • Ohno S, Ono N, Takeda M, et al (2004) Dissection of measles virus V protein in relation to its ability to block alpha/beta interferon signal transduction. J Gen Virol 85:2991–2999

    Article  PubMed  CAS  Google Scholar 

  • Okuno Y, Asada T, Yamanishi K, et al (1978) Studies on the use of mumps virus for treatment of human cancer. Biken J 21:37–49

    PubMed  CAS  Google Scholar 

  • Oldstone MB, Lewicki H, Thomas D, et al (1999) Measles virus infection in a transgenic model: virus-induced immunosuppression and central nervous system disease. Cell 98:629–640

    Article  PubMed  CAS  Google Scholar 

  • Ong HT, Timm MM, Greip PR, et al (2006) Oncolytic measles virus targets high CD46 expression on multiple myeloma cells. Exp Hematol 34:713–720

    Article  PubMed  CAS  Google Scholar 

  • Ong HT, Hasagawa K, Dietz KB, et al (2007) Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther 14:324–333

    Article  PubMed  CAS  Google Scholar 

  • Ordman CW, Jennings CG, Janeway CA (1944) Chemical clinical, and immunological studies on the products of human plasma fractionation. XII. The use of concentrated normal human serum gamma globulin (human immune serum globulin) in the prevention and attenuation of measles. J Clin Invest 23:541–549

    Article  PubMed  CAS  Google Scholar 

  • Osunkoya BO, Ukaejiofo EO, Ajayi O, et al (1990) Evidence that circulating lymphocytes act as vehicles or viraemia in measles. West Afr J Med 9:35–39

    PubMed  CAS  Google Scholar 

  • Palosaari H, Parisien JP, Rodriguez JJ, et al (2003) STAT protein interference and suppression of cytokine signal transduction by measles virus V protein. J Virol 77:7635–7644

    Article  PubMed  CAS  Google Scholar 

  • Paraskevakou G, Allen C, Nakamura T, et al (2007) Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFR- or EGFRvIII-expressing gliomas. Mol Ther 15:677–686

    PubMed  CAS  Google Scholar 

  • Peng KW, Ahmann GJ, Pham L, et al (2001) Systemic therapy of myeloma xenografts by an attenuated measles virus. Blood 98:2002–2007

    Article  PubMed  CAS  Google Scholar 

  • Peng KW, Facteau S, Wegman T, et al (2002a) Intraperitoneal therapy of ovarian cancer using an engineered measles virus. Cancer Res 62:4656–4662

    CAS  Google Scholar 

  • Peng KW, TenEyck CJ, Gallanis E, et al (2002b) Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med 8:527–531

    Article  CAS  Google Scholar 

  • Peng KW, Donovan KA, Schneider U, et al (2003a) Oncolytic measles viruses displaying a single-chain antibody against CD38, a myeloma cell marker. Blood 101:2557–2562

    Article  CAS  Google Scholar 

  • Peng KW, Frenzke M, Meyers R, et al (2003b) Biodistribution of oncolytic measles virus after intra-peritoneal administration into Ifnar-CD46Ge transgenic mice. Hum Gene Ther 14:1565–1577

    Article  CAS  Google Scholar 

  • Peng K-W, Holler PD, Orr BA, et al (2004) Targeting membrane fusion to specific peptide/MHC complexes through a high-affinity T-cell receptor. Gene Ther 11:1234–1239

    Article  PubMed  CAS  Google Scholar 

  • Peng KW, Hada EM, Anderson BD, et al (2006) Pharmacokinetics of oncolytic measles virother-apy: eventual equilibrium between virus and tumor in an ovarian cancer xenograft model. Cancer Gene Ther 13:732–738

    Article  PubMed  CAS  Google Scholar 

  • Peng KW, Pham L, Ye H, et al (2008) Organ distribution of gene expression after intravenous infusion of targeted and untargeted lentiviral vectors. Gene Ther 8:1456–1463

    Article  CAS  Google Scholar 

  • Phuong LK, Allen C, Peng KW, et al (2003) Use of a vaccine strain of measles virus genetically engineered to produce carcinoembryonic antigen as a novel therapeutic agent against glioblas-toma multiforme. Cancer Res 63:2462–2469

    PubMed  CAS  Google Scholar 

  • Radecke F, Spielhofer P, Schneider H, et al (1995) Rescue of measles viruses from cloned DNA. Embo J 14:5773–5784

    PubMed  CAS  Google Scholar 

  • Reid T, Galanis E, Abbruzzese J, et al (2002) Hepatic arterial infusion of a replication-selective oncolytic adenovirus (dl1520): phase II viral, immunologic, and clinical endpoints. Cancer Res 62:6070–6079

    PubMed  CAS  Google Scholar 

  • Riesco-Eizaguirre G, Santisteban P (2006) A perspective view of sodium iodide symporter research and its clinical implications. Eur J Endocrinol 155:495–512

    Article  PubMed  CAS  Google Scholar 

  • Riley-Vargas RC, Gill DB, Kemper C, et al (2004) CD46: expanding beyond complement regulation. Trends Immunol 25:496–503

    Article  PubMed  CAS  Google Scholar 

  • Rota JS, Wang ZD, Rota PA, et al (1994) Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Res 31:317–330

    Article  PubMed  CAS  Google Scholar 

  • Russell S (1994) Replicating vectors for cancer therapy: a question of strategy. Semin Cancer Biol 5:437–443

    PubMed  CAS  Google Scholar 

  • Russell SJ, Peng KW (2007) Viruses as anticancer drugs. Trends Pharmacol Sci 28:326–333

    Article  PubMed  CAS  Google Scholar 

  • Scallan CD, Jiang H, Liu T, et al (2006) Human immunoglobulin inhibits liver transduction by A AV vectors at low AAV2 neutralizing titers in SCID mice. Blood 107:1810–1817

    Article  PubMed  CAS  Google Scholar 

  • Schneider U, Bulloughh F, Vongpunsawad S, et al (2000) Recombinant measles viruses efficiently entering cells through targeted receptors. J Virol 74: 9928–9936

    Article  PubMed  CAS  Google Scholar 

  • Schwarz AJ, Boyer PA, Zirbel LW, et al (1960) Experimental vaccination against measles. I. Tests of live measles and distemper vaccine in monkeys and two human volunteers under laboratory conditions. JAMA 173:861–867

    CAS  Google Scholar 

  • Seya T, Hara T, Matsumoto M, et al (1990) Quantitative analysis of membrane cofactor protein (MCP) of complement. High expression of MCP on human leukemia cell lines, which is down-regulated during cell differentiation. J Immunol 145:238–245

    PubMed  CAS  Google Scholar 

  • Shaffer JA, Bellini WJ, Rota PA (2003) The C protein of measles virus inhibits the type I inter-feron response. Virology 315:389–397

    Article  PubMed  CAS  Google Scholar 

  • Shen Y, Nemunaitis J (2006)Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther 13:975–992

    Article  PubMed  CAS  Google Scholar 

  • Shimizu Y, Hasumi K, Okudaira Y, et al (1988) Immunotherapy of advanced gynecologic cancer patients utilizing mumps virus. Cancer Detect Prev 12:487–495

    PubMed  CAS  Google Scholar 

  • Simpson KL, Jones A, Norman S, et al (1997) Expression of the complement regulatory proteins decay accelerating factor (DAF, CD55), membrane cofactor protein (MCP, CD46) and CD59 in the normal human uterine cervix and in premalignant and malignant cervical disease. Am J Pathol 151:1455–1467

    PubMed  CAS  Google Scholar 

  • Sinkovics JG, Horvath JC (2000) Newcastle disease virus (NDV): brief history of its oncolytic strains. J Clin Virol 16:1–15

    Article  PubMed  CAS  Google Scholar 

  • Southam CM, Moore AE (1952) Clinical studies of viruses as antineoplastic agents with particular reference to Egypt 101 virus. Cancer 5: 1025–1034

    Article  PubMed  CAS  Google Scholar 

  • Steinberg A (2001) Cyclophosphamide. In: Austen K et al. (eds) Therapeutic immunology. Blackwell, Malden, pp 31–50

    Google Scholar 

  • Stojdl DF, Lichty B, Knowles S, et al (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6(7):821–85

    Article  PubMed  CAS  Google Scholar 

  • Stojdl DF,, et al (2003) VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4:263–275

    Article  PubMed  CAS  Google Scholar 

  • Strong JE, Lichty B, ten Oever BR, et al (1998) The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 17:3351–3362

    Article  PubMed  CAS  Google Scholar 

  • Tai CK, Kasahara N (2008) Replication-competent retrovirus vectors for cancer gene therapy. Front Biosci 13:3083–3095

    Article  PubMed  CAS  Google Scholar 

  • Takeda M, Kato A, Kobune F, et al (1998) Measles virus attenuation associated with transcrip-tional impediment and a few amino acid changes in the polymerase and accessory proteins. J Virol 72:8690–8696

    PubMed  CAS  Google Scholar 

  • Takeuchi K, Kadota SI, Takeda M, et al (2003) Measles virus V protein blocks interferon (IFN)-alpha/beta but not IFN-gamma signaling by inhibiting STAT1 and STAT2 phosphorylation. FEBS Lett 545:177–182

    Article  PubMed  CAS  Google Scholar 

  • Taqi AM, Abdurrahman AB, Yakubu AM, et al (1981) Regression of Hodgkin's disease after measles. Lancet 1:1112

    Article  PubMed  CAS  Google Scholar 

  • Thorne SH, Hwang TH, O'Gorman WE, et al (2007) Rational strain selection and engineering creates a broad-spectrum, systemically effective oncolytic poxvirus JX-963. J Clin Invest 117:3350–3358

    Article  PubMed  CAS  Google Scholar 

  • Thorsteinsson L, O'Dowd GM, Harrington PM, et al (1998) The complement regulatory proteins CD46 and CD59, but not CD55, are highly expressed by glandular epithelium of human breast and colorectal tumour tissues. APMIS 106:869–878

    Article  PubMed  CAS  Google Scholar 

  • Ungerechts G, Springfield C, Frenzke ME, et al (2007a) An immunocompetent murine model for oncolysis with an armed and targeted measles virus. Mol Ther 15:1991–1997

    Article  CAS  Google Scholar 

  • Ungerechts G, Springfield C, Frenzke ME, et al (2007b) Lymphoma chemovirotherapy: CD20-targeted and convertase-armed measles virus can synergize with fludarabine. Cancer Res 67:10939–10947

    Article  CAS  Google Scholar 

  • van Binnendijk RS, van der Heijden RW, van Amerongen G, et al (1994) Viral replication and development of specific immunity in macaques after infection with different measles virus strains. J Infect Dis 170:443–448

    PubMed  Google Scholar 

  • Varsano S, Rashkovsky L, Shapiro H, et al (1998) Human lung cancer cell lines express cell membrane complement inhibitory proteins and are extremely resistant to complement-mediated lysis; a comparison with normal human respiratory epithelium in vitro, and an insight into mechanism(s) of resistance. Clin Exp Immunol 113:173–182

    Article  PubMed  CAS  Google Scholar 

  • Vongpunsawad S, Oezgun M, Braun W, et al (2004) Selectively receptor-blind measles viruses: identification of residues necessary for SLAM- or CD46-induced fusion and their localization on a new hemagglutinin structural model. J Virol 78:302–313

    Article  PubMed  CAS  Google Scholar 

  • Waehler R, Russell SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8:573–587

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Yuan F (2006) Delivery of viral vectors to tumor cells: extracellular transport, systemic distribution, and strategies for improvement. Ann Biomed Eng 34:114–127

    Article  PubMed  CAS  Google Scholar 

  • Wein LM, Wu JT, Kirn DH (2003) Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res 63:1317–1324

    PubMed  CAS  Google Scholar 

  • Xie M, Tanaka K, Ono N, et al (1999) Amino acid substitutions at position 481 differently affect the ability of the measles virus hemagglutinin to induce cell fusion in monkey and marmoset cells co-expressing the fusion protein. Arch Virol 144:1689–1699

    Article  PubMed  CAS  Google Scholar 

  • Yamakawa M, Yamada K, Tsuge T, et al (1994) Protection of thyroid cancer cells by complement-regulatory factors. Cancer 73:2808–2817

    Article  PubMed  CAS  Google Scholar 

  • Yanagi Y, Takeda M, Ohno S et al (2006) Measles virus receptors and tropism. Jpn J Infect Dis 59:1–5

    PubMed  CAS  Google Scholar 

  • Yu W, Fang H (2007) Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 7:141–148

    Article  PubMed  Google Scholar 

  • Ziegler JL (1976) Spontaneous remission in Burkitt's lymphoma. Natl Cancer Inst Monogr 44:61–65

    PubMed  CAS  Google Scholar 

  • Zingher A, Mortimer P (2005) Convalescent whole blood, plasma and serum in the prophylaxis of measles: JAMA, 12 April, 1926; 1180–1181. Rev Med Virol 15:407–418; discussion 418–421

    Article  PubMed  Google Scholar 

  • Zygiert Z (1971) Hodgkin's disease: remissions after measles. Lancet 1(7699):593

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. J. Russell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russell, S.J., Peng, K.W. (2009). Measles Virus for Cancer Therapy. In: Griffin, D.E., Oldstone, M.B.A. (eds) Measles. Current Topics in Microbiology and Immunology, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70617-5_11

Download citation

Publish with us

Policies and ethics