Skip to main content
Book cover

Measles pp 129–150Cite as

Molecular Epidemiology of Measles Virus

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 330))

Genetic characterization of wild-type measles viruses provides a means to study the transmission pathways of the virus and is an essential component of laboratory-based surveillance. Laboratory-based surveillance for measles and rubella, including genetic characterization of wild-type viruses, is performed throughout the world by the WHO Measles and Rubella Laboratory Network, which serves 166 countries in all WHO regions. In particular, the genetic data can help confirm the sources of virus or suggest a source for unknown-source cases as well as to establish links, or lack thereof, between various cases and outbreaks. Virologic surveillance has helped to document the interruption of transmission of endemic measles in some regions. Thus, molecular characterization of measles viruses has provided a valuable tool for measuring the effectiveness of measles control programs, and virologic surveillance needs to be expanded in all areas of the world and conducted during all phases of measles control.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anonymous (2002) Outbreak of measles — Venezuela and Colombia 2001–2002. MMWR Morb Mortal Wkly Rep 51:757–760

    Google Scholar 

  • Anonymous (2003) Absence of transmission of the D9 measles virus — Region of the Americas, November 2002–March 2003. MMWR Morb Mortal Wkly Rep 52(11):228–229

    Google Scholar 

  • Anonymous (2005a) Progress toward elimination of measles and prevention of congenital rubella infection — European region 1990–2004. MMWR Morb Mortal Wkly Rep 54(7):175–179

    Google Scholar 

  • Anonymous (2005b) Global Measles and Rubella Laboratory Network January 2004–June 2005. MMWR Morb Mortal Wkly Rep 54(43):1100–1104

    Google Scholar 

  • Anonymous (2008a) Multistate measles outbreak associated with an international youth sporting event — Pennsylvania Michigan, and Texas August–September 2007. MMWR Morb Mortal Wkly Rep 57(7):169–173

    Google Scholar 

  • Anonymous (2008b) Measles—United States, January -July 2008, MMWR Morb Mortal Wkly Rep 57(33):893–896

    Google Scholar 

  • Alla A, Liffick SL, Newton BR, Elaouad R, Rota PA, Bellini WJ (2002) Genetic analysis of measles viruses isolated in Morocco. J Med Virol 68:441–444

    PubMed  CAS  Google Scholar 

  • Alla A, Waku-Kouomou D, Benjouad A, Elaouad R, Wild TF (2006) Rapid diversification of measles virus genotypes circulating in Morocco during 2004–2005 epidemics. J Med Virol 78:1465–1472

    PubMed  CAS  Google Scholar 

  • Asaria P, MacMahon E (2006) Measles in the United Kingdom: can we eradicate it by 2010? BMJ 333:890–895

    PubMed  Google Scholar 

  • Bankamp B, Bellini WJ, Rota PA (1999) Comparison of L proteins of vaccine and wild-type measles viruses. J Gen Virol 80:1617–1625

    PubMed  CAS  Google Scholar 

  • Bankamp B, Lopareva EN, Kremer JR, Tian Y, Clemens MS, Pate R, LaMonte-Fowlkes AC, Kessler JR, Muller CP, Bellini WJ, Rota PA (2008) Genetic variability and mRNA editing frequencies of the phosphoprotein genes of wild-type measles viruses. Virus Res doi:10.1016/ j.virusres.2008.04.008 (in press)

    Google Scholar 

  • Barrero PR, de Wolff CD, Passeggi CA, Mistchenko AS (2000) Sequence analysis of measles virus hemagglutinin isolated in Argentina during the 1997–1998 outbreak. J Med Virol 60:91–96

    PubMed  CAS  Google Scholar 

  • Baumeister E, Siqueira MM, Savy V, Friedrich F (2000) Genetic characterization of wild-type measles viruses isolated during the 1998 measles epidemic in Argentina. Acta Virol 44:169–174

    PubMed  CAS  Google Scholar 

  • Bellini WJ, Rota JS, Lowe LE, Katz RS, Dyken PR, Zaki SR, Shieh WJ, Rota PA (2005) Subacute sclerosing panencephalitis: more cases of this fatal disease are prevented by measles immunization than was previously recognized. J Infect Dis 192:1686–1693

    PubMed  Google Scholar 

  • Campbell H, Andrews N, Brown KE, Miller E (2007) Review of the effect of measles vaccination on the epidemiology of SSPE. Int J Epidemiol 36:1334–48

    PubMed  CAS  Google Scholar 

  • Canepa E, Siqueira MM, Hortal M, Friedrich F (2000) Recent measles viral activity in Uruguai:serological and genetic approaches. Acta Virol 44:35–39

    PubMed  CAS  Google Scholar 

  • Cattaneo R, Schmid A, Spielhofer P, Kaelin K, Baczko K, ter Meulen V, Pardowitz J, Flanagan S, Rima BK, Udem SA, et al (1989) Mutated and hypermutated genes of persistent measles viruses which caused lethal human brain diseases. Virology 173:415–425

    PubMed  CAS  Google Scholar 

  • Chibo D, Birch CJ, Rota PA, Catton MG (2000) Molecular characterization of measles viruses isolated in Victoria Australia, between 1973 and 1998. J Gen Virol 81:2511–2518

    PubMed  CAS  Google Scholar 

  • Chibo D, Riddell M, Catton M, Birch C (2002) Novel measles virus genotype East Timor and Australia. Emerg Infect Dis 8:735–737

    PubMed  Google Scholar 

  • Chibo D, Riddell M, Catton M, Lyon M, Lum G, Birch C (2003) Studies of measles viruses circulating in Australia between 1999 and 2001 reveals a new genotype. Virus Res 91:213–221

    PubMed  CAS  Google Scholar 

  • Christensen LS, Scholler S, Schierup MH, Vestergaard BF, Mordhorst CH (2002) Sequence analysis of measles virus strains collected during the pre- and early-vaccination era in Denmark reveals a considerable diversity of ancient strains. APMIS 110:113–122

    PubMed  Google Scholar 

  • Colf LA, Juo ZS, Garcia KC (2007) Structure of the measles virus hemagglutinin. Nat Struct Mol Biol 14:1227–1228

    PubMed  CAS  Google Scholar 

  • de Swart RL, Wertheim-van Dillen PM, van Binnendijk RS, Muller CP, Frenkel J, Osterhaus AD (2000) Measles in a Dutch hospital introduced by an immuno-compromised infant from Indonesia infected with a new virus genotype. Lancet 355:201–202

    PubMed  Google Scholar 

  • Djebbi A, Bahri O, Mokhtariazad T, Alkhatib M, Ben Yahia A, Rezig D, Mohsni E, Triki H (2005) Identification of measles virus genotypes from recent outbreaks in countries from the Eastern Mediterranean Region. J Clin Virol 34:1–6

    PubMed  CAS  Google Scholar 

  • El Mubarak HS, van de Bildt MW, Mustafa OA, Vos HW, Mukhtar MM, Ibrahim SA, Andeweg AC, El Hassan AM, Osterhaus AD, de Swart RL (2002) Genetic characterization of wild-type measles viruses circulating in suburban Khartoum 1997–2000. J Gen Virol 83:1437–1443

    PubMed  CAS  Google Scholar 

  • Giraudon P, Jacquier MF, Wild TF (1988) Antigenic analysis of African measles virus field isolates: identification and localisation of one conserved and two variable epitope sites on the NP protein. Virus Res 10:137–152

    PubMed  CAS  Google Scholar 

  • Gouandjika-Vasilache I, Waku-Kouomou D, Menard D, Beyrand C, Guye F, Ngoay-Kossy JC, Selekon B, and Wild TF (2006) Cocirculation of measles virus genotype B2 and B3.1 in Central African Republic during the 2000 measles epidemic. J Med Virol 78:964–970

    PubMed  CAS  Google Scholar 

  • Griffin DE (2001) Measles virus. In: Knipe DM, Howley PM, Griffin DE, Lamb RA, Martin MA, Roizman Strauss SE (eds) Fields virology, 4th edn. Lippincott Williams, and Wilkins, Philadelphia, pp 1401–1441

    Google Scholar 

  • Halsey NA, Modlin JF, Jabbour JT, Dubey L, Eddins DL, Ludwig DD (1980) Risk factors in suba-cute sclerosing panencephalitis: a case-control study. Am J Epidemiol 111:415–424

    PubMed  CAS  Google Scholar 

  • Hanses F, Truong AT, Ammerlaan W, Ikusika O, Adu F, Oyefolu AO, Omilabu SA, Muller CP (1999) Molecular epidemiology of Nigerian and Ghanaian measles virus isolates reveals a genotype circulating widely in western and central Africa. J Gen Virol 80:871–877

    PubMed  CAS  Google Scholar 

  • Hanses F, van Binnendijk R, Ammerlaan W, Truong AT, de Rond L, Schneider F, Muller CP (2000) Genetic variability of measles viruses circulating in the Benelux. Arch Virol 145:541–551

    PubMed  CAS  Google Scholar 

  • Hashiguchi T, Kajikawa M, Maita N, Takeda M, Kuroki K, Sasaki K, Kohda D, Yanagi Y, Maenaka K (2007) Crystal structure of measles virus hemagglutinin provides insight into effective vaccines. Proc Natl Acad Sci U S A 104:19535–19540

    PubMed  CAS  Google Scholar 

  • Hersh BS, Tambini G, Nogueira AC, Carrasco P, de Quadros CA (2000) Review of regional measles surveillance data in the Americas 1996–99. Lancet 355:1943–1948

    PubMed  CAS  Google Scholar 

  • Horm SV, Dumas C, Svay S, Feldon K, Reynes JM (2003) Genetic characterization of wild-type measles viruses in Cambodia. Virus Res 97:31–37

    PubMed  CAS  Google Scholar 

  • Horta-Barbosa L, Fuccillo DA, Sever JL, Zeman W (1969) Subacute sclerosing panencephalitis: isolation of measles virus from a brain biopsy. Nature 221:974

    PubMed  CAS  Google Scholar 

  • Horta-Barbosa L, Hamilton R, Wittig B, Fuccillo DA, Sever JL, Vernon ML (1971) Subacute sclerosing panencephalitis: isolation of suppressed measles virus from lymph node biopsies. Science 173:840–841

    PubMed  CAS  Google Scholar 

  • Hubschen JM, Kremer JR, De Landtsheer S, Muller CP (2008) A multiplex TaqMan PCR assay for the detection of measles and rubella virus. J Virol Methods 149:246–250

    PubMed  Google Scholar 

  • Hummel KB, Lowe L, Bellini WJ, Rota PA (2006) Development of quantitative gene-specific real-time RT-PCR assays for the detection of measles virus in clinical specimens. J Virol Methods 132:166–173

    PubMed  CAS  Google Scholar 

  • Jin L, Brown DW, Ramsay ME, Rota PA, Bellini WJ (1997) The diversity of measles virus in the United Kingdom 1992–1995. J Gen Virol 78:1287–1294

    PubMed  CAS  Google Scholar 

  • Jin L, Beard S, Hunjan R, Brown DW, Miller E (2002) Characterization of measles virus strains causing SSPE: a study of 11 cases. J Neurovirol 8:335–344

    PubMed  CAS  Google Scholar 

  • Katayama Y, Shibahara K, Kohama T, Homma M, Hotta H (1997) Molecular epidemiology and changing distribution of genotypes of measles virus field strains in Japan. J Clin Microbiol 35:2651–2653

    PubMed  CAS  Google Scholar 

  • Kobune F, Sakata H, Sugiura A (1990) Marmoset lymphoblastoid cells as a sensitive host for isolation of measles virus. J Virol 64:700–705

    PubMed  CAS  Google Scholar 

  • Korukluoglu G, Liffick S, Guris D, Kobune F, Rota PA, Bellini WJ, Ceylan A, Ertem M (2005) Genetic characterization of measles viruses isolated in Turkey during 2000 and 2001. Virol J 2:58

    PubMed  Google Scholar 

  • Korukluoglu G, Zarakolu P (2006) Antigenic analysis of wild-type measles viruses currently isolated in Turkey. Turk J Pediatr 48:105–108

    PubMed  Google Scholar 

  • Kouomou DW, Nerrienet E, Mfoupouendoun J, Tene G, Whittle H, Wild TF (2002) Measles virus strains circulating in Central and West Africa: geographical distribution of two B3 genotypes. J Med Virol 68:433–440

    PubMed  CAS  Google Scholar 

  • Kreis S, Vardas E, Whistler T (1997) Sequence analysis of the nucleocapsid gene of measles virus isolates from South Africa identifies a new genotype. J Gen Virol 78:1581–1587

    PubMed  CAS  Google Scholar 

  • Kremer JR, Nguyen GH, Shulga SV, Nguyen PH, Nguyen UT, Tikhonova NT, Muller CP (2007) Genotyping of recent measles virus strains from Russia and Vietnam by nucleotide-specific multiplex PCR. J Med Virol 79:987–994

    PubMed  CAS  Google Scholar 

  • Kremer JR, Brown KE, Jin L, Santibanez S, Shulga S V, Aboudy Y, Demchyshyna IV, Djemileva S, Echevarria JE, Featherstone DF, Hukic M, Johansen K, Litwinska B, Lopareva E, Lupulescu E, Mentis A, Mihneva Z, Mosquera MM, Muscat M, Naumova MA, Nedeljkovic J, Nekrasova LS, Magurano F, Fortuna C, de Andrade HR, Richard JL, Robo A, Rota PA, Samoilovich EO, Sarv I, Semeiko GV, Shugayev N, Utegenova ES, van Binnendijk R, Vinner L, Waku-Kouomou D, Wild TF, Brown DW, Mankertz A, Muller CP, Mulders MN (2008) High genetic diversity of measles virus. World Health Organization European Region 2005–2006. Emerg Infect Dis 14:107–114

    PubMed  Google Scholar 

  • Kubo H, Iritani N, Murakami T, Haruki K (2002) Isolation of a wild type measles virus classified as genotype H1 in Osaka City. Jpn J Infect Dis 55:177–179

    PubMed  Google Scholar 

  • Kubo H, Iritani N, Seto Y (2003) Co-circulation of two genotypes of measles virus and mutual change of the prevailing genotypes every few years in Osaka, Japan. J Med Virol 69:273–278

    PubMed  Google Scholar 

  • Liffick SL, Thi Thoung N, Xu W, Li Y, Phoung Lien H, Bellini WJ, Rota PA (2001) Genetic characterization of contemporary wild-type measles viruses from Vietnam and the People's Republic of China: identification of two genotypes within clade H. Virus Res 77:81–87

    PubMed  CAS  Google Scholar 

  • Mbugua FM, Okoth FA, Gray M, Kamau T, Kalu A, Eggers R, Borus P, Kombich J, Langat A, Maritim P, Lesiamon J, Tipples GA (2003) Molecular epidemiology of measles virus in Kenya. J Med Virol 71:599–604

    PubMed  CAS  Google Scholar 

  • Morita Y, Suzuki T, Shiono M, Shiobara M, Saitoh M, Tsukagoshi H, Yoshizumi M, Ishioka T, Kato M, Kozawa K, Ttanaka-Taya K, Yasui Y, Noda M, Okabe N, Kimura H (2007) Sequence and phylogenetic analysis of the nucleoprotein (N) gene in measles viruses prevalent in Gunma Japan, in 2007. Jpn J Infect Dis 60:402–404

    PubMed  Google Scholar 

  • Mulders MN, Truong AT, Muller CP (2001) Monitoring of measles elimination using molecular epidemiology. Vaccine 19:2245–2249

    PubMed  CAS  Google Scholar 

  • Mulders MN, Nebie YK, Fack F, Kapitanyuk T, Sanou O, Valea DC, Muyembe-Tamfum JJ, Ammerlaan W, Muller CP (2003) Limited diversity of measles field isolates after a national immunization day in Burkina Faso: progress from endemic to epidemic transmission? J Infect Dis 187 Suppl 1:S277–82

    PubMed  Google Scholar 

  • Muwonge A, Nanyunja M, Rota PA, Bwogi J, Lowe L, Liffick SL, Bellini WJ, Sylvester S (2005) New measles genotype Uganda. Emerg Infect Dis 11:1522–1526

    PubMed  CAS  Google Scholar 

  • Na BK, Lee JS, Shin GC, Shin JM, Lee JY, Chung JK, Ha DR, Lee JK, Ma SH, Cho HW, Kang C, Kim WJ (2001) Sequence analysis of hemagglutinin and nucleoprotein genes of measles viruses isolated in Korea during the 2000 epidemic. Virus Res 81:143–149

    PubMed  CAS  Google Scholar 

  • Na BK, Shin JM, Lee JY, Shin GC, Kim YY, Lee JS, Lee JK, Cho HW, Lee HJ, Rota PA, Bellini WJ, Kim WJ, Kang C (2003) Genetic and antigenic characterization of measles viruses that circulated in Korea during the 2000–2001 epidemic. J Med Virol 70:649–654

    PubMed  Google Scholar 

  • Nakayama T, Zhou J, Fujino M (2003) Current status of measles in Japan. J Infect Chemother 9:1–7

    PubMed  Google Scholar 

  • Neverov AA, Riddell MA, Moss WJ, Volokhov DV, Rota PA, Lowe LE, Chibo D, Smit SB, Griffin DE, Chumakov KM, Chizhikov VE (2006) Genotyping of measles virus in clinical specimens on the basis of oligonucleotide microarray hybridization patterns. J Clin Microbiol 44:3752–3759

    PubMed  CAS  Google Scholar 

  • Nigatu W, Jin L, Cohen BJ, Nokes DJ, Etana M, Cutts FT, Brown DW (2001) Measles virus strains circulating in Ethiopia in 1998–1999: molecular characterisation using oral fluid samples and identification of a new genotype. J Med Virol 65:373–380

    PubMed  CAS  Google Scholar 

  • Oliveira MI, Rota PA, Curti SP, Figueiredo CA, Afonso AM, Theobaldo M, Souza LT, Liffick SL, Bellini WJ, Moraes JC, Stevien KE, Durigon EL (2002) Genetic homogeneity of measles viruses associated with a measles outbreak Sao Paulo Brazil 1997. Emerg Infect Dis 8:808–813

    Article  PubMed  CAS  Google Scholar 

  • Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H, Yanagi Y (2001) Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75:4399–4401

    PubMed  CAS  Google Scholar 

  • Outlaw MC, Jaye A, Whittle HC, Pringle CR (1997) Clustering of haemagglutinin gene sequences of measles viruses isolated in the Gambia. Virus Res 48:125–131

    PubMed  CAS  Google Scholar 

  • Parks CL, Lerch RA, Walpita P, Wang HP, Sidhu MS, Udem SA (2001a) Analysis of the noncod-ing regions of measles virus strains in the Edmonston vaccine lineage. J Virol 75:921–933

    CAS  Google Scholar 

  • Parks CL, Lerch RA, Walpita P, Wang HP, Sidhu MS, Udem SA (2001b) Comparison of predicted amino acid sequences of measles virus strains in the Edmonston vaccine lineage. J Virol 75:910–920

    CAS  Google Scholar 

  • Ramsay ME, Jin L, White J, Litton P, Cohen B, Brown D (2003) The elimination of indigenous measles transmission in England and Wales. J Infect Dis 187 Suppl 1:S198–S207

    PubMed  Google Scholar 

  • Riddell MA, Rota JS, Rota PA (2005) Review of the temporal and geographical distribution of measles virus genotypes in the prevaccine and postvaccine eras. Virol J 2:87

    PubMed  Google Scholar 

  • Rima BK, Earle JA, Baczko K, Rota PA, Bellini WJ (1995a) Measles virus strain variations. Curr Top Microbiol Immunol 191:65–83

    CAS  Google Scholar 

  • Rima BK, Earle JA, Yeo RP, Herlihy L, Baczko K, ter Meulen V, Carabana J, Caballero M, Celma ML, Fernandez-Munoz R (1995b) Temporal and geographical distribution of measles virus genotypes. J Gen Virol 76:1173–1180

    CAS  Google Scholar 

  • Rima BK, Earle JA, Baczko K, ter Meulen V, Liebert UG, Carstens C, Carabana J, Caballero M, Celma ML, Fernandez-Munoz R (1997) Sequence divergence of measles virus haemagglutinin during natural evolution and adaptation to cell culture. J Gen Virol 78:97–106

    PubMed  CAS  Google Scholar 

  • Rota PA, Bellini WJ (2003) Update on the global distribution of genotypes of wild type measles viruses. J Infect Dis 187 Suppl 1:S270–S276

    PubMed  Google Scholar 

  • Rota JS, Hummel KB, Rota PA, Bellini WJ (1992) Genetic variability of the glycoprotein genes of current wild-type measles isolates. Virology 188:135–142

    PubMed  CAS  Google Scholar 

  • Rota JS, Wang ZD, Rota PA, Bellini WJ (1994a) Comparison of sequences of the H, F, and N coding genes of measles virus vaccine strains. Virus Res 31:317–330

    CAS  Google Scholar 

  • Rota PA, Bloom AE, Vanchiere JA, Bellini WJ (1994b) Evolution of the nucleoprotein and matrix genes of wild-type strains of measles virus isolated from recent epidemics. Virology 198:724–730

    CAS  Google Scholar 

  • Rota JS, Heath JL, Rota PA, King GE, Celma ML, Carabana J, Fernandez-Munoz R, Brown D, Jin L, Bellini WJ (1996) Molecular epidemiology of measles virus: identification of pathways of transmission and implications for measles elimination. J Infect Dis 173:32–37

    PubMed  CAS  Google Scholar 

  • Rota JS, Rota PA, Redd SB, Redd SC, Pattamadilok S, Bellini WJ (1998) Genetic analysis of measles viruses isolated in the United States 1995–1996. J Infect Dis 177:204–208

    PubMed  CAS  Google Scholar 

  • Rota PA, Liffick S, Rosenthal S, Heriyanto B, Chua KB (2000) Measles genotype G2 in Indonesia and Malaysia. Lancet 355:1557–1558

    PubMed  CAS  Google Scholar 

  • Rota PA, Liffick SL, Rota JS, Katz RS, Redd S, Papania M, Bellini WJ (2002) Molecular epidemiology of measles viruses in the United States 1997–2001. Emerg Infect Dis 8:902–908

    PubMed  Google Scholar 

  • Rota J, Lowe L, Rota P, Bellini W, Redd S, Dayan G, van Binnendijk R, Hahne S, Tipples G, Macey J, Espinoza R, Posey D, Plummer A, Bateman J, Gudino J, Cruz-Ramirez E, Lopez-Martinez I, Anaya-Lopez L, Holy Akwar T, Giffin S, Carrion V, de Filippis AM, Vicari A, Tan C, Wolf B, Wytovich K, Borus P, Mbugua F, Chege P, Kombich J, Akoua-Koffi C, Smit S, Bukenya H, Bwogi J, Baliraine FN, Kremer J, Muller C, Santibanez S (2006) Identical genotype B3 sequences from measles patients in 4 countries 2005. Emerg Infect Dis 12:1779–1781

    PubMed  CAS  Google Scholar 

  • Sakata H, Kobune F, Sato TA, Tanabayashi K, Yamada A, Sugiura A (1993) Variation in field isolates of measles virus during an 8-year period in Japan. Microbiol Immunol 37:233–237

    PubMed  CAS  Google Scholar 

  • Santibanez S, Heider A, Gerike E, Agafonov A, Schreier E (1999) Genotyping of measles virus isolates from central Europe and Russia. J Med Virol 58:313–320

    PubMed  CAS  Google Scholar 

  • Santibanez S, Tischer A, Heider A, Siedler A, Hengel H (2002) Rapid replacement of endemic measles virus genotypes. J Gen Virol 83:2699–2708

    PubMed  CAS  Google Scholar 

  • Santibanez S, Niewiesk S, Heider A, Schneider-Schaulies J, Berbers GA, Zimmermann A, Halenius A, Wolbert A, Deitemeier I, Tischer A, Hengel H (2005) Probing neutralizing-anti-body responses against emerging measles viruses (MVs): immune selection of MV by H protein-specific antibodies? J Gen Virol 86:365–374

    PubMed  CAS  Google Scholar 

  • Schrag SJ, Rota PA, Bellini WJ (1999) Spontaneous mutation rate of measles virus: direct estimation based on mutations conferring monoclonal antibody resistance. J Virol 73:51–54

    PubMed  CAS  Google Scholar 

  • Siqueira MM, Castro-Silva R, Cruz C, Oliveira IC, Cunha GM, Mello M, Rota PA, Bellini WJ, Friedrich F (2001) Genomic characterization of wild-type measles viruses that circulated in different states in Brazil during the 1997 measles epidemic. J Med Virol 63:299–304

    PubMed  CAS  Google Scholar 

  • Smit SB, Hardie D, Tiemessen CT (2005) Measles virus genotype B2 is not inactive: evidence of continued circulation in Africa. J Med Virol 77:550–557

    PubMed  CAS  Google Scholar 

  • Takahashi M, Nakayama T, Kashiwagi Y, Takami T, Sonoda S, Yamanaka T, Ochiai H, Ihara T, Tajima T (2000) Single genotype of measles virus is dominant whereas several genotypes of mumps virus are co-circulating. J Med Virol 62:278–285

    PubMed  CAS  Google Scholar 

  • Tamin A, Rota PA, Wang ZD, Heath JL, Anderson LJ, Bellini WJ (1994) Antigenic analysis of current wild type and vaccine strains of measles virus. J Infect Dis 170:795–801

    PubMed  CAS  Google Scholar 

  • Taylor MJ, Godfrey E, Baczko K, ter Meulen V, Wild TF, Rima BK (1991) Identification of several different lineages of measles virus. J Gen Virol 72:83–88

    PubMed  CAS  Google Scholar 

  • Truong AT, Mulders MN, Gautam DC, Ammerlaan W, de Swart RL, King CC, Osterhaus AD, Muller CP (2001) Genetic analysis of Asian measles virus strains — new endemic genotype in Nepal. Virus Res 76:71–78

    PubMed  CAS  Google Scholar 

  • Vaidya SR, Wairagkar NS, Raja D, Khedekar DD, Gunasekaran P, Shankar S, Mahadevan A, Ramamurty N (2008) First detection of measles genotype D7 from India. Virus Genes 36:31–34

    PubMed  CAS  Google Scholar 

  • Wairagkar N, Rota PA, Liffick S, Shaikh N, Padbidri VS, Bellini WJ (2002) Characterization of measles sequences from Pune India. J Med Virol 68:611–614

    PubMed  CAS  Google Scholar 

  • Waku-Kouomou D, Alla A, Blanquier B, Jeantet D, Caidi H, Rguig A, Freymuth F, Wild FT (2006) Genotyping measles virus by real-time amplification refractory mutation system PCR represents a rapid approach for measles outbreak investigations. J Clin Microbiol 44:487–494

    PubMed  CAS  Google Scholar 

  • Woelk CH, Jin L, Holmes EC, Brown DW (2001) Immune and artificial selection in the haemag-glutinin (H) glycoprotein of measles virus. J Gen Virol 82:2463–2474

    PubMed  CAS  Google Scholar 

  • Wolfson LJ, Strebel PM, Gacic-Dobo M, Hoekstra EJ, McFarland JW, Hersh BS (2007) Has the 2005 measles mortality reduction goal been achieved? A natural history modelling study. Lancet 369:191–200

    PubMed  Google Scholar 

  • World Health Organization (1998) Standardization of the nomenclature for describing the genetic characteristics of wild-type measles viruses. Wkly Epidemiol Rec 73:265–272

    Google Scholar 

  • World Health Organization (2001a) Nomenclature for describing the genetic characteristics of wild-type measles viruses (update) Part I. Wkly Epidemiol Rec 76(32):242–247

    Google Scholar 

  • World Health Organization (2001b) Nomenclature for describing the genetic characteristics of wild-type measles viruses (update) Wkly Epidemiol Rec 76(33):249–251

    Google Scholar 

  • World Health Organization (2003) Update of the nomenclature for describing the genetic characteristics of wild-type measles viruses: new genotypes and reference strains. Wkly Epidemiol Rec 78(27):229–232

    Google Scholar 

  • World Health Organization (2005a) Global Measles and Rubella Laboratory Network — update. Wkly Epidemiol Rec 80(44):384–388

    Google Scholar 

  • World Health Organization (2005b) New genotype of measles virus and update on global distribution of measles genotypes. Wkly Epidemiol Rec 80(40):347–351

    Google Scholar 

  • World Health Organization (2005c) Standardization of the nomenclature for genetic characteristics of wild-type rubella viruses. Wkly Epidemiol Rec 80(14):126–132

    Google Scholar 

  • World Health Organization (2006) Global distribution of measles and rubella genotypes — update. Wkly Epidemiol Rec 81(51/52):474–479

    Google Scholar 

  • World Health Organization (2007a) Update of standard nomenclature for wild-type rubella viruses 2007. Wkly Epidemiol Rec 82(24):216–222

    Google Scholar 

  • World Health Organization (2007b) Manual for the diagnosis of measles and rubella infection, 2nd edn. World Health Organization, Geneva

    Google Scholar 

  • World Health Organization (2008) Measles and rubella laboratory network: 2007 meeting on the use of alternative sampling techniques for surveillance. Wkly Epdemiol Rec 83:225–232

    Google Scholar 

  • Xu W, Tamin A, Rota JS, Zhang L, Bellini WJ, Rota PA (1998) New genetic group of measles virus isolated in the People's Republic of China. Virus Res 54:147–156

    PubMed  CAS  Google Scholar 

  • Yamaguchi S (1997) Identification of three lineages of wild measles virus by nucleotide sequence analysis of N, P, M, F, and L genes in Japan. J Med Virol 52:113–120

    PubMed  CAS  Google Scholar 

  • Zhang Y, Zhu Z, Rota PA, Jiang X, Hu J, Wang J, Tang W, Zhang Z, Li C, Wang C, Wang T, Zheng L, Tian H, Ling H, Zhao C, Ma Y, Lin C, He J, Tian J, Ma Y, Li P, Guan R, He W, Zhou J, Liu G, Zhang H, Yan X, Yang X, Zhang J, Lu Y, Zhou S, Ba Z, Liu W, Yang X, Ma Y, Liang Y, Li Y, Ji Y, Featherstone D, Bellini WJ, Xu S, Liang G, Xu W (2007) Molecular epidemiology of measles viruses in China 1995–2003. Virol J 4:14

    Google Scholar 

  • Zhou J, Fujino M, Inou Y, Kumada A, Aoki Y, Iwata S, Nakayama T (2003) H1 genotype of measles virus was detected in outbreaks in Japan after 2000. J Med Virol 70:642–648

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Rota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rota, P.A., Featherstone, D.A., Bellini, W.J. (2009). Molecular Epidemiology of Measles Virus. In: Griffin, D.E., Oldstone, M.B.A. (eds) Measles. Current Topics in Microbiology and Immunology, vol 330. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-70617-5_7

Download citation

Publish with us

Policies and ethics