Skip to main content

Yersinia pestis Biofilm in the Flea Vector and Its Role in the Transmission of Plague

  • Chapter
Bacterial Biofilms

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 322))

Transmission by fleabite is a relatively recent evolutionary adaptation of Yersinia pestis, the bacterial agent of bubonic plague. To produce a transmissible infection, Y. pestis grows as an attached biofilm in the foregut of the flea vector. Biofilm formation both in the flea foregut and in vitro is dependent on an extracellular matrix (ECM) synthesized by the Yersinia hms gene products. The hms genes are similar to the pga and ica genes of Escherichia coli and Staphylococcus epidermidis, respectively, that act to synthesize a poly-β -1,6-N-acetyl-d-glucosamine ECM required for biofilm formation. As with extracellular polysaccharide production in many other bacteria, synthesis of the Hms-dependent ECM is controlled by intracellular levels of cyclic-di-GMP. Yersinia pseudotuberculosis, the food- and water-borne enteric pathogen from which Y. pestis evolved recently, possesses identical hms genes and can form biofilm in vitro but not in the flea. The genetic changes in Y. pestis that resulted in adapting biofilm-forming capability to the flea gut environment, a critical step in the evolution of vector-borne transmission, have yet to be identified. During a flea bite, Y. pestis is regurgitated into the dermis in a unique biofilm phenotype, and this has implications for the initial interaction with the mammalian innate immune response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Achtman M, Zurth K, Morelli G, Torrea G, Guiyoule A, Carniel E (1999) Yersinia pestis, the cause of plague, is a recently emerged clone of Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 96:14043–14048

    Article  PubMed  CAS  Google Scholar 

  • Achtman M, Morelli G, Zhu P, Wirth T, Diehl I, Kusecek B, Vogler AJ, Wagner DM, Allender CJ, Easterday WR, Chenal-Francisque V, Worsham P, Thomson NR, Parkhill J, Lindler LE, Carniel E, Keim P (2004) Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci U S A 101:17837–17842

    Article  PubMed  CAS  Google Scholar 

  • Bacot AW, Martin CJ (1914) Observations on the mechanism of the transmission of plague by fleas. J Hygiene (Plague Suppl 3) 13:423–439

    CAS  Google Scholar 

  • Bacot AW (1915) Further notes on the mechanism of the transmission of plague by fleas. J Hygiene (Plague Suppl 4) 14:774–776

    CAS  Google Scholar 

  • Beesley ED, Brubaker RR, Janssen WA, Surgalla MJ (1967) Pesticins. III. Expression of coagulase and mechanism of fibrinolysis. J Bacteriol 94:19–26

    Article  PubMed  CAS  Google Scholar 

  • Beloin C, Da Re S, Ghigo J-M (2005) Colonization of abiotic surfaces. In: Böck A, Curtis R III, Kaper JB, Neidhardt FC, Nyström K, Rudd E, Squires CL (eds) EcoSal -Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington DC

    Google Scholar 

  • Bercovier H, Mollaret HH, Alonso JM, Brault J, Fanning GR, Steigerwalt A, Brenner DJ (1980) Intra- and interspecies relatedness of Yersinia pestis by DNA hybridization and its relationship to Yersinia pseudotuberculosis. Curr Microbiol 4:225–229

    Article  CAS  Google Scholar 

  • Bobrov AG, Kirillina O, Perry RD (2005) The phosphodiesterase activity of the HmsP EAL domain is required for negative regulation of biofilm formation in Yersinia pestis. FEMS Microbiol Lett 247:123–130

    Article  PubMed  CAS  Google Scholar 

  • Bottone EJ, Bercovier H, Mollaret HH (2005) Genus XLI. Yersinia. In: Brenner DJ, Krieg NR, Staley JT (eds) Bergey’s manual of systematic bacteriology, 2nd edn. Springer, Berlin New York Heidelberg

    Google Scholar 

  • Brubaker RR, Beesley ED, Surgalla MJ (1965) Pasteurella pestis: role of pesticin I and iron in experimental plague. Science 149:422–424

    Article  PubMed  CAS  Google Scholar 

  • Brubaker RR (1991) Factors promoting acute and chronic diseases caused by yersiniae. Clin Microbiol Rev 4:309–324

    PubMed  CAS  Google Scholar 

  • Burroughs AL (1947) Sylvatic plague studies. The vector efficiency of nine species of fleas compared with Xenopsylla cheopis. J Hygiene 45:371–396

    Article  CAS  Google Scholar 

  • Camilli A, Bassler BL (2006) Bacterial small-molecule signaling pathways. Science 311:1113–1116

    Article  PubMed  CAS  Google Scholar 

  • Carniel E (2003) Evolution of pathogenic Yersinia, some lights in the dark. In: Skurnik M, Bengoechea JA, Granfors K (eds) The genus Yersinia: entering the functional genomic era. Kluwer Academic, New York, pp 3–11

    Google Scholar 

  • Cavanaugh DC (1971) Specific effect of temperature upon transmission of the plague bacillus by the oriental rat flea, Xenopsylla cheopis. Am J Trop Med Hyg 20:264–273

    PubMed  CAS  Google Scholar 

  • Cavanaugh DC, Marshall JD (1972) The influence of climate on the seasonal prevalence of plague in the Republic of Vietnam. J Wildl Dis 8:85–94

    PubMed  CAS  Google Scholar 

  • Chain PSG, Carniel E, Larimer FW, Lamerdin J, Stoutland PO, Regala WM, Georgescu AM, Vergez LM, Land ML, Motin VL, Brubaker RR, Fowler J, Hinnebusch J, Marceau M, Medigue C, Simonet M, Chenal-Francisque V, Souza B, Dacheaux D, Elliot JM, Derbise A, Hauser LJ, Garcia E (2004) Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci U S A 101:13826–13831

    Article  PubMed  CAS  Google Scholar 

  • Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  PubMed  CAS  Google Scholar 

  • D’Argenio DA, Miller SI (2004) Cyclic di-GMP as a bacterial second messenger. Microbiology 150:2497–2502

    Article  PubMed  CAS  Google Scholar 

  • Darby C, Hsu JW, Ghori N, Falkow S (2002) Caenorhabditis elegans: plague bacteria biofilm blocks food intake. Nature 417:243–244

    Article  PubMed  CAS  Google Scholar 

  • Darby C, Ananth SL, Tan L, Hinnebusch BJ (2005) Identification of gmhA, a Yersinia pestis gene required for flea blockage, by using a Caenorhabditis elegans biofilm system. Infect Immun 73:7236–7242

    Article  PubMed  CAS  Google Scholar 

  • Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Burland V, Plunkett G, Boutin A, Mayhew GF, Liss P, Perna NT, Rose DJ, Mau B, Zhou S, Schwartz DC, Fetherston JD, Lindler LE, Brubaker RR, Plano GV, Straley SC, McDonough KA, Nilles ML, Matson JS, Blattner FR, Perry RD (2002) Genome sequence of Yersinia pestis KIM. J Bacteriol 184:4601–4611

    Article  PubMed  CAS  Google Scholar 

  • Eisen RJ, Bearden SW, Wilder AP, Montenieri JA, Antolin MF, Gage KL (2006) Early-phase transmission of Yersinia pestis by unblocked fleas as a mechanism explaining rapidly spreading plague epizootics. Proc Natl Acad Sci U S A 103:15380–15385

    Article  PubMed  CAS  Google Scholar 

  • Engelthaler DM, Hinnebusch BJ, Rittner CM, Gage KL (2000) Quantitative competitive PCR as a technique for exploring flea-Yersina pestis dynamics. Am J Trop Med Hyg 62:552–560

    PubMed  CAS  Google Scholar 

  • Erickson DL, Jarrett CO, Wren BW, Hinnebusch BJ (2006) Serotype differences and lack of biofilm formation characterize Yersinia pseudotuberculosis infection of the Xenopsylla cheopis flea vector of Yersinia pestis. J Bacteriol 188:1113–1119

    Article  PubMed  CAS  Google Scholar 

  • Ferber DM, Brubaker RR (1981) Plasmids in Yersinia pestis. Infect Immun 31:839–841

    PubMed  CAS  Google Scholar 

  • Forman S, Bobrov AG, Kirillina O, Craig SK, Abney J, Fetherston JD, Perry RD (2006) Identification of critical amino acid residues in the plague biofilm Hms proteins. Microbiology 152:3399–3410

    Article  PubMed  CAS  Google Scholar 

  • Gage KL, Kosoy MY (2005) Natural history of plague: perspectives from more than a century of research. Annu Rev Entomol 50:505–528

    Article  PubMed  CAS  Google Scholar 

  • Galimand M, Guiyoule A, Gerbaud G, Rasoamanana B, Chanteau S, Carniel E, Courvalin P (1997) Multidrug resistance in Yersinia pestis mediated by a transferable plasmid. N Engl J Med 337:677–680

    Article  PubMed  CAS  Google Scholar 

  • Gerke C, Kraft A, Sussmuth R, Schweitzer O, Götz F (1998) Characterization of the N-acetylglucosaminyltransferase activity involved in the biosynthesis of the Staphylococcus epidermidis polysaccharide intercellular adhesin. J Biol Chem 273:18586–18593

    Article  PubMed  CAS  Google Scholar 

  • Gjermansen M, Ragas P, Tolker-Nielsen T (2006) Proteins with GGDEF and EAL domains regulate Pseudomonas putida biofilm formation and dispersal. FEMS Microbiol Lett 265:215–224

    Article  PubMed  CAS  Google Scholar 

  • Guiyoule A, Gerbaud G, Buchrieser C, Galimand M, Rahalison L, Chanteau S, Courvalin P, Carniel E (2001) Transferable plasmid-mediated resistance to streptomycin in a clinical isolate of Yersinia pestis. Emerg Infect Dis 7:43–48

    Article  PubMed  CAS  Google Scholar 

  • Götz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378

    Article  PubMed  Google Scholar 

  • Hare JM, McDonough KA (1999) High-frequency RecA-dependent and -independent mechanisms of Congo red binding mutations in Yersinia pestis. J Bacteriol 181:4896–4904

    PubMed  CAS  Google Scholar 

  • Hausner M, Wuertz S (1999) High rates of conjugation in bacterial biofilms as determined by quantitative in situ analysis. Appl Environ Microbiol 65:3710–3713

    PubMed  CAS  Google Scholar 

  • Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Götz F (1996) Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol 20:1083–1091

    Article  PubMed  CAS  Google Scholar 

  • Heilmann C, Götz F (1998) Further characterization of Staphylococcus epidermidis transposon mutants deficient in primary attachment or intercellular adhesion. Zentralbl Bakteriol 287:69–83

    PubMed  CAS  Google Scholar 

  • Heydorn A, Ersbøll BK, Hentzer M, Parsek MR, Givskov M, Molin S (2000) Experimental reproducibility in flow-chamber biofilms. Microbiology 146:2409–2415

    PubMed  CAS  Google Scholar 

  • Hinchliffe SJ, Isherwood KE, Stabler RA, Prentice MB, Rakin A, Nichols RA, Oyston PC, Hinds J, Titball RW, Wren BW (2003) Application of DNA microarrays to study the evolutionary genomics of Yersinia pestis and Yersinia pseudotuberculosis. Genome Res 13:2018–2029

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch BJ, Perry RD, Schwan TG (1996) Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273:367–370

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch BJ (1997) Bubonic plague: a molecular genetic case history of the emergence of an infectious disease. J Mol Med 75:645–652

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch BJ, Fischer ER, Schwan TG (1998) Evaluation of the role of the Yersinia pestis plasminogen activator and other plasmid-encoded factors in temperature-dependent blockage of the flea. J Inf Dis 178:1406–1415

    Article  CAS  Google Scholar 

  • Hinnebusch BJ, Rosso M-L, Schwan TG, Carniel E (2002a) High-frequency conjugative transfer of antibiotic resistance genes to Yersinia pestis in the flea midgut. Mol Microbiol 46:349–354

    Article  PubMed  CAS  Google Scholar 

  • Hinnebusch BJ, Rudolph AE, Cherepanov P, Dixon JE, Schwan TG, Forsberg Å (2002b) Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296:733–735

    Article  PubMed  CAS  Google Scholar 

  • Höflich J, Berninsone P, Göbel C, Gravato-Nobre MJ, Libby BJ, Darby C, Politz SM, Hodgkin J, Hirschberg CB, Baumeister R (2004) Loss of srf-3-encoded nucleotide sugar transporter activity in Caenorhabditis elegans alters surface antigenicity and prevents bacterial adherence. J Biol Chem 279:30440–30448

    Article  PubMed  CAS  Google Scholar 

  • Ibrahim A, Goebel BM, Liesack W, Griffiths M, Stackebrandt E (1993) The phylogeny of the genus Yersinia based on 16S rDNA sequences. FEMS Microbiol Lett 114:173–177

    Article  PubMed  CAS  Google Scholar 

  • Itoh Y, Wang X, Hinnebusch BJ, Preston JF, Romeo T (2005) Depolymerization of β-1, 6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol 187:382–387

    Article  PubMed  CAS  Google Scholar 

  • Jackson DW, Suzuki K, Oakford L, Simecka JW, Hart ME, Romeo T (2002) Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol 184:290–301

    Article  PubMed  CAS  Google Scholar 

  • Jackson S, Burrows TW (1956) The pigmentation of Pasteurella pestis on a defined medium containing haemin. Br J Exp Pathol 37:570–576

    PubMed  CAS  Google Scholar 

  • Jarrett CO, Deak E, Isherwood KE, Oyston PC, Fischer ER, Whitney AR, Kobayashi SD, DeLeo FR, Hinnebusch BJ (2004) Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Inf Dis 190:783–792

    Article  Google Scholar 

  • Jawetz E, Meyer KF (1944) Studies on plague immunity in experimental animals. II. Some factors of the immunity mechanism in bubonic plague. J Immunol 49:15–29

    Google Scholar 

  • Jesaitis AJ, Franklin MJ, Berglund D, Sasaki M, Lord CI, Bleazard JB, Duffy JE, Beyenal H, Lewandowski Z (2003) Compromised host defense on Pseudomonas aeruginosa biofilms: characterization of neutrophil and biofilm interactions. J Immunol 171:4329–4339

    PubMed  CAS  Google Scholar 

  • Jones HA, Lillard JW, Perry RD (1999) HmsT, a protein essential for expression of the haemin storage (Hms+) phenotype of Yersinia pestis. Microbiology 145:2117–2128

    Article  PubMed  CAS  Google Scholar 

  • Joshua GWP, Karlyshev AV, Smith MP, Isherwood KE, Titball RW, Wren BW (2003) A Caenorhabditis elegans model of Yersinia infection: biofilm formation on a biotic surface. Microbiology 149:3221–3229

    Article  PubMed  CAS  Google Scholar 

  • Kader A, Simm R, Gerstel U, Morr M, Römling U (2006) Hierarchical involvement of various GGDEF domain proteins in rdar morphotype development of Salmonella enterica serovar Typhimurium. Mol Microbiol 60:602–616

    Article  PubMed  CAS  Google Scholar 

  • Kaplan JB, Ragunath C, Ramasubbu N, Fine DH (2003) Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J Bacteriol 185:4693–4698

    Article  PubMed  CAS  Google Scholar 

  • Karatan E, Duncan TR, Watnick PI (2005) NspS, a predicted polyamine sensor, mediates activation of Vibrio cholerae biofilm formation by norspermidine. J Bacteriol 187:7434–7443

    Article  PubMed  CAS  Google Scholar 

  • Kirillina O, Fetherston JD, Bobrov AG, Abney J, Perry RD (2004) HmsP, a putative phosphodiesterase, and HmsT, a putative diguanylate cyclase, control Hms-dependent biofilm formation in Yersinia pestis. Mol Microbiol 54:75–88

    Article  PubMed  CAS  Google Scholar 

  • Korhonen TK, Kukkonen M, Virkola R, Lang H, Suomalainen M, Kyllönen P, Lähteenmäki K (2004) The plasminogen activator Pla of Yersinia pestis: localized proteolysis and systemic spread. In: Carniel E, Hinnebusch BJ (eds) Yersinia. Molecular and Cellular Biology. Horizon Bioscience, Norfolk, UK, pp 349–362

    Google Scholar 

  • Lillard JW, Fetherston JD, Pedersen L, Pendrak ML, Perry RD (1997) Sequence and genetic analysis of the hemin storage (hms) system of Yersinia pestis. Gene 193:13–21

    Article  PubMed  CAS  Google Scholar 

  • Lillard JW, Bearden SW, Fetherston JD, Perry RD (1999) The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals. Microbiology 145:197–209

    Article  PubMed  CAS  Google Scholar 

  • Lindler LE, Klempner MS, Straley SC (1990) Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun 58:2569–2577

    PubMed  CAS  Google Scholar 

  • Lorange EA, Race BL, Sebbane F, Hinnebusch BJ (2005) Poor vector competence of fleas and the evolution of hypervirulence in Yersinia pestis. J Inf Dis 191:1907–1912

    Article  Google Scholar 

  • Mack D, Fischer W, Krokotsch A, Leopold K, Hartmann R, Egge H, Laufs R (1996) The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1, 6-linked glucosaminoglycan: purification and structural analysis. J Bacteriol 178:175–183

    PubMed  CAS  Google Scholar 

  • Matthysse AG, Yarnall HA, Young N (1996) Requirement for genes with homology to ABC transport systems for attachment and virulence of Agrobacterium tumefaciens. J Bacteriol 178:5302–5308

    PubMed  CAS  Google Scholar 

  • McDonough KA, Falkow S (1989) A Yersinia pestis-specific DNA fragment encodes temperature-dependent coagulase and fibrinolysin-associated phenotypes. Mol Microbiol 3:767–775

    Article  PubMed  CAS  Google Scholar 

  • McDonough KA, Barnes AM, Quan TJ, Montenieri J, Falkow S (1993) Mutation in the pla gene of Yersinia pestis alters the course of the plague bacillus-flea (Siphonaptera: Ceratophyllidae) interaction. J Med Entomol 30:772–780

    PubMed  CAS  Google Scholar 

  • Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261

    Article  PubMed  CAS  Google Scholar 

  • Newman KL, Almeida RP, Purcell AH, Lindow SE (2004) Cell-cell signaling controls Xylella fastidiosa interactions with both insects and plants. Proc Natl Acad Sci U S A 101:1737–1742

    Article  PubMed  CAS  Google Scholar 

  • Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MTG, Prentice MB, Sebhaihia M, James KD, Churcher C, Mungall KL, Baker S, Basham D, Bentley SD, Brooks K, Cerdeño-Tárraga AM, Chillingworth T, Cronin A, Davies RM, Davis P, Dougan G, Feltwell T, Hamlin N, Holroyd S, Jagels K, Karlyshev AV, Leather S, Moule S, Oyston PCF, Quail M, Rutherford K, Simmonds M, Skelton J, Stevens K, Whitehead S, Barrell BG (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413:523–527

    Article  PubMed  CAS  Google Scholar 

  • Parsek MR, Singh PK (2003) Bacterial biofilms: an emerging link to disease pathogenesis. Ann Rev Micriobiol 57:677–701

    Article  CAS  Google Scholar 

  • Parsek MR, Greenberg EP (2005) Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol 13:27–33

    Article  PubMed  CAS  Google Scholar 

  • Patel CN, Wortham BW, Lines JL, Fetherston JD, Perry RD, Oliveira MA (2006) Polyamines are essential for the formation of plague biofilm. J Bacteriol 188:2355–2363

    Article  PubMed  CAS  Google Scholar 

  • Pendrak ML, Perry RD (1993) Proteins essential for expression of the Hms+ phenotype of Yersinia pestis. Mol Microbiol 8:857–864

    Article  PubMed  CAS  Google Scholar 

  • Perry RD, Pendrak ML, Schuetze P (1990) Identification and cloning of a hemin storage locus involved in the pigmentation phenotype of Yersinia pestis. J Bacteriol 172:5929–5937

    PubMed  CAS  Google Scholar 

  • Perry RD, Lucier TS, Sikkema DJ, Brubaker RR (1993) Storage reservoirs of hemin and inorganic iron in Yersinia pestis. Infect Immun 61:32–39

    PubMed  CAS  Google Scholar 

  • Perry RD, Fetherston JD (1997) Yersinia pestis - etiologic agent of plague. Clin Microbiol Rev 10:35–66

    PubMed  CAS  Google Scholar 

  • Perry RD, Bobrov AG, Kirillina O, Jones HA, Pedersen L, Abney J, Fetherston JD (2004) Temperature regulation of the hemin storage (Hms+) phenotype of Yersinia pestis is posttranscriptional. J Bacteriol 186:1638–1647

    Article  PubMed  CAS  Google Scholar 

  • Pollitzer R (1954) Plague. World Health Organization, Geneva

    Google Scholar 

  • Prouty AM, Gunn JS (2003) Comparative analysis of Salmonella enterica serovar Typhimurium biofilm formation on gallstones and on glass. Infect Immun 71:7154–7158

    Article  PubMed  CAS  Google Scholar 

  • Purcell AH, Finlay AH, McLean DL (1979) Pierce’s disease bacterium: mechanism of transmission by leafhopper vectors. Science 206:839–841

    Article  PubMed  CAS  Google Scholar 

  • Rogers ME, Chance ML, Bates PA (2002) The role of promastigote secretory gel in the origin and transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. Parasitology 124:495–507

    Article  PubMed  CAS  Google Scholar 

  • Rupp ME, Ulphani JS, Fey PD, Bartscht K, Mack D (1999) Characterization of the importance of polysaccharide intercellular adhesin/hemagglutinin of Staphylococcus epidermidis in the pathogenesis of biomaterial-based infection in a mouse foreign body infection model. Infect Immun 67:2627–2632

    PubMed  CAS  Google Scholar 

  • Römling U, Amikam D (2006) Cyclic di-GMP as a second messenger. Curr Opin Microbiol 9:218–228

    Article  PubMed  CAS  Google Scholar 

  • Sebbane F, Jarrett CO, Gardner D, Long D, Hinnebusch BJ (2006) Role of the Yersinia pestis plasminogen activator in the incidence of distinct septicemic and bubonic forms of flea-borne plague. Proc Natl Acad Sci U S A 103:5526–5530

    Article  PubMed  CAS  Google Scholar 

  • Simm R, Fetherston JD, Kader A, Römling U, Perry RD (2005) Phenotypic convergence mediated by GGDEF-domain-containing proteins. J Bacteriol 187:6816–6823

    Article  PubMed  CAS  Google Scholar 

  • Sodeinde OA, Goguen JD (1988) Genetic analysis of the 9.5-kilobase virulence plasmid of Yersinia pestis. Infect Immun 56:2743–2748

    PubMed  CAS  Google Scholar 

  • Sodeinde OA, Subrahmanyam YV, Stark K, Quan T, Bao Y, Goguen JD (1992) A surface protease and the invasive character of plague. Science 258:1004–1007

    Article  PubMed  CAS  Google Scholar 

  • Staggs TM, Fetherston JD, Perry RD (1994) Pleiotropic effects of a Yersinia pestis fur mutation. J Bacteriol 176:7614–7624

    PubMed  CAS  Google Scholar 

  • Stierhof YD, Bates PA, Jacobson RL, Rogers ME, Schlein Y, Handman E, Ilg T (1999) Filamentous proteophosphoglycan secreted by Leishmania promastigotes forms gel-like three-dimensional networks that obstruct the digestive tract of infected sandfly vectors. Eur J Cell Biol 78:675–689

    PubMed  CAS  Google Scholar 

  • Stoodley P, Sauer K, Davies DG, Costerton JW (2002) Biofilms as complex differentiated communities. Ann Rev Microbiol 56:187–209

    Article  CAS  Google Scholar 

  • Surgalla MJ, Beesley ED (1969) Congo red agar plating medium for detecting pigmentation in Pasteurella pestis. Appl Microbiol 18:834–837

    PubMed  CAS  Google Scholar 

  • Tan L, Darby C (2004) A movable surface: formation of Yersinia sp. biofilms on motile Caenorhabditis elegans. J Bacteriol 186:5087–5592

    Article  PubMed  CAS  Google Scholar 

  • Tan L, Darby C (2005) Yersinia pestis is viable with endotoxin composed of only lipid A. J Bacteriol 187:6599–6600

    Article  PubMed  CAS  Google Scholar 

  • Tan L, Darby C (2006) Yersinia pestis YrbH is a multifunctional protein required for both 3-deoxy-D-manno-oct-2-ulosonic acid biosynthesis and biofilm formation. Mol Microbiol 61:861–870

    Article  PubMed  CAS  Google Scholar 

  • Vadyvaloo V, Otto M (2005) Molecular genetics of Staphylococcus epidermidis biofilms on indwelling medical devices. Int J Art Org 28:1069–1078

    CAS  Google Scholar 

  • Vadyvaloo V, Jarrett CO, Sturdevant DE, Sebbane F, Hinnebusch BJ (2007) Analysis of Yersinia pestis gene expression in the flea vector. Adv Exp Med Biol 603:192–200

    Article  PubMed  Google Scholar 

  • Vuong C, Gerke C, Somerville GA, Fischer ER, Otto M (2003) Quorum-sensing control of biofilm factors in Staphylococcus epidermidis. J Infect Dis 188:706–718

    Article  PubMed  CAS  Google Scholar 

  • Vuong C, Kocianova S, Voyich JM, Yao Y, Fischer ER, DeLeo FR, Otto M (2004a) A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279:54881–54886

    Article  PubMed  CAS  Google Scholar 

  • Vuong C, Voyich JM, Fischer ER, Braughton KR, Whitney AR, DeLeo FR, Otto M (2004b) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275

    Article  PubMed  CAS  Google Scholar 

  • Wang X, Preston JF, Romeo T (2004) The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186:2442–2449

    Google Scholar 

  • Wang X, Dubey AK, Suzuki K, Baker CS, Babitzke P, Romeo T (2005) CsrA post-transcriptionally represses pgaABCD, responsible for synthesis of a biofilm polysaccharide adhesin of Escherichia coli. Mol Microbiol 56:1648–1663

    Article  PubMed  CAS  Google Scholar 

  • Webb CT, Brooks CP, Gage KL, Antolin MF (2006) Classic flea-borne transmission does not drive plague epizootics in prairie dogs. Proc Natl Acad Sci U S A 103:6236–6241

    Article  PubMed  CAS  Google Scholar 

  • Weiner R, Seagren E, Arnosti C, Quintero E (1999) Bacterial survival in biofilms: probes for exopolysaccharide and its hydrolysis, and measurements of intra- and interphase mass fluxes. Methods Enzymol 310:403–426

    Article  PubMed  CAS  Google Scholar 

  • Zhou D, Han Y, Song Y, Huang P, Yang R (2004) Comparative and evolutionary genomics of Yersinia pestis. Microbes Infect 6:1226–1234

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Mekalanos JJ (2003) Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell 5:647–656

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hinnebusch, B.J., Erickson, D.L. (2008). Yersinia pestis Biofilm in the Flea Vector and Its Role in the Transmission of Plague. In: Romeo, T. (eds) Bacterial Biofilms. Current Topics in Microbiology and Immunology, vol 322. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75418-3_11

Download citation

Publish with us

Policies and ethics