Skip to main content

A Tutorial on Learning with Bayesian Networks

  • Chapter
Innovations in Bayesian Networks

Part of the book series: Studies in Computational Intelligence ((SCI,volume 156))

Abstract

A Bayesian network is a graphical model that encodes probabilistic relationships among variables of interest. When used in conjunction with statistical techniques, the graphical model has several advantages for data analysis. One, because the model encodes dependencies among all variables, it readily handles situations where some data entries are missing. Two, a Bayesian network can be used to learn causal relationships, and hence can be used to gain understanding about a problem domain and to predict the consequences of intervention. Three, because the model has both a causal and probabilistic semantics, it is an ideal representation for combining prior knowledge (which often comes in causal form) and data. Four, Bayesian statistical methods in conjunction with Bayesian networks offer an efficient and principled approach for avoiding the overfitting of data. In this paper, we discuss methods for constructing Bayesian networks from prior knowledge and summarize Bayesian statistical methods for using data to improve these models. With regard to the latter task, we describe methods for learning both the parameters and structure of a Bayesian network, including techniques for learning with incomplete data. In addition, we relate Bayesian-network methods for learning to techniques for supervised and unsupervised learning. We illustrate the graphical-modeling approach using a real-world case study.

Re-printed with kind permission of MIT Press and Kluwer books.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aliferis, C., Cooper, G.: An evaluation of an algorithm for inductive learning of Bayesian belief networks using simulated data sets. In: Proceedings of Tenth Conference on Uncertainty in Artificial Intelligence, Seattle, WA, pp. 8–14. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  2. Badsberg, J.: Model search in contingency tables by CoCo. In: Dodge, Y., Whittaker, J. (eds.) Computational Statistics, pp. 251–256, Physica Verlag, Heidelberg (1992)

    Google Scholar 

  3. Becker, S., LeCun, Y.: Improving the convergence of backpropagation learning with second order methods. In: Proceedings of the 1988 Connectionist Models Summer School, pp. 29–37. Morgan Kaufmann, San Francisco (1989)

    Google Scholar 

  4. Beinlich, I., Suermondt, H., Chavez, R., Cooper, G.: The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In: Proceedings of the Second European Conference on Artificial Intelligence in Medicine, London, pp. 247–256. Springer, Berlin (1989)

    Google Scholar 

  5. Bernardo, J.: Expected information as expected utility. Annals of Statistics 7, 686–690 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bernardo, J., Smith, A.: Bayesian Theory. John Wiley and Sons, New York (1994)

    MATH  Google Scholar 

  7. Buntine, W.: Theory refinement on Bayesian networks. In: Proceedings of Seventh Conference on Uncertainty in Artificial Intelligence, Los Angeles, CA, pp. 52–60. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  8. Buntine, W.: Learning classification trees. In: Artificial Intelligence Frontiers in Statistics: AI and statistics III. Chapman and Hall, New York (1993)

    Google Scholar 

  9. Buntine, W.: A guide to the literature on learning graphical models. IEEE Transactions on Knowledge and Data Engineering 8, 195–210 (1996)

    Article  Google Scholar 

  10. Chaloner, K., Duncan, G.: Assessment of a beta prior distribution: PM elicitation. The Statistician 32, 174–180 (1983)

    Article  Google Scholar 

  11. Cheeseman, P., Stutz, J.: Bayesian classification (Auto-Class): Theory and results. In: Fayyad, U., Piatesky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 153–180. AAAI Press, Menlo Park (1995)

    Google Scholar 

  12. Chib, S.: Marginal likelihood from the Gibbs output. Journal of the American Statistical Association 90, 1313–1321 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chickering, D.: A transformational characterization of equivalent Bayesian network structures. In: Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU, pp. 87–98. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  14. Chickering, D.: Learning equivalence classes of Bayesian-network structures. In: Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence, Portland, OR. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  15. Chickering, D., Geiger, D., Heckerman, D.: Learning Bayesian networks: Search methods and experimental results. In: Proceedings of Fifth Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL. Society for Artificial Intelligence in Statistics pp. 112–128 (1995)

    Google Scholar 

  16. Chickering, D., Heckerman, D.: Efficient approximations for the marginal likelihood of incomplete data given a Bayesian network. Technical Report MSR-TR-96-08, Microsoft Research, Redmond, WA (Revised, November 1996)

    Google Scholar 

  17. Cooper, G.: Computational complexity of probabilistic inference using Bayesian belief networks (Research note). Artificial Intelligence 42, 393–405 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  18. Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Machine. Learning 9, 309–347 (1992)

    MATH  Google Scholar 

  19. Cooper, G., Herskovits, E.: A Bayesian method for the induction of probabilistic networks from data. Technical Report SMI-91-1, Section on Medical Informatics, Stanford University (January 1991)

    Google Scholar 

  20. Cox, R.: Probability, frequency and reasonable expectation. American Journal of Physics 14, 1–13 (1946)

    Article  MATH  MathSciNet  Google Scholar 

  21. Dagum, P., Luby, M.: Approximating probabilistic inference in bayesian belief networks is np-hard. Artificial Intelligence 60, 141–153 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. D’Ambrosio, B.: Local expression languages for probabilistic dependence. In: Proceedings of Seventh Conference on Uncertainty in Artificial Intelligence, Los Angeles, CA, pp. 95–102. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  23. Darwiche, A., Provan, G.: Query DAGs: A practical paradigm for implementing belief-network inference. In: Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence, Portland, OR, pp. 203–210. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  24. Dawid, P.: Statistical theory. The prequential approach (with discussion). Journal of the Royal Statistical Society A 147, 178–292 (1984)

    MathSciNet  Google Scholar 

  25. Dawid, P.: Applications of a general propagation algorithm for probabilistic expert systmes. Statistics and Computing 2, 25–36 (1992)

    Article  Google Scholar 

  26. de Finetti, B.: Theory of Probability. Wiley and Sons, New York (1970)

    Google Scholar 

  27. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from in complete data via the EM algorithm. Journal of the Royal Statistical Society, B 39, 1–38 (1977)

    MATH  MathSciNet  Google Scholar 

  28. DiCiccio, T., Kass, R., Raftery, A., Wasserman, L.: Computing Bayes factors by combining simulation and asymptotic approximations. Technical Report 630, Department of Statistics, Carnegie Mellon University, PA (July 1995)

    Google Scholar 

  29. Friedman, J.: Introduction to computational learning and statistical prediction. Technical report, Department of Statistics, Stanford University (1995)

    Google Scholar 

  30. Friedman, J.: On bias, variance, 0/1-loss, and the curse of dimensionality. Data Mining and Knowledge Discovery, 1 (1996)

    Google Scholar 

  31. Friedman, N., Godlszmidt, M.: Building classifiers using Bayesian networks. In: Proceedings AAAI 1996 Thirteenth National Conference on Artificial Intelligence, Portland, OR, pp. 1277–1284. AAAI Press, Menlo Park (1996)

    Google Scholar 

  32. Frydenberg, M.: The chain graph Markov property. Scandinavian Journal of Statistics 17, 333–353 (1990)

    MATH  MathSciNet  Google Scholar 

  33. Geiger, D., Heckerman, D.: A characterization of the Dirichlet distribution applicable to learning Bayesian networks. Technical Report MSR-TR-94-16, Microsoft Research, Redmond, WA (Revised, February 1995)

    Google Scholar 

  34. Geiger, D., Heckerman, D., Meek, C.: Asymptotic model selection for directed networks with hidden variables. In: Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence, Portland, OR, pp. 283–290. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  35. Geman, S., Geman, D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–742 (1984)

    MATH  Google Scholar 

  36. Gilks, W., Richardson, S., Spiegelhalter, D.: Markov Chain Monte Carlo in Practice. Chapman and Hall, Boca Raton (1996)

    MATH  Google Scholar 

  37. Good, I.: Probability and the Weighing of Evidence. Hafners, New York (1950)

    MATH  Google Scholar 

  38. Heckerman, D.: A tractable algorithm for diagnosing multiple diseases. In: Proceedings of the Fifth Workshop on Uncertainty in Artificial Intelligence, Windsor, ON, pp. 174–181. Association for Uncertainty in Artificial Intelligence, Mountain View, CA (1989); Also In: Henrion, M., Shachter, R., Kanal, L., Lemmer, J. (eds.) Uncertainty in Artificial Intelligence 5, pp. 163–171. North-Holland, New York (1990)

    Google Scholar 

  39. Heckerman, D.: A Bayesian approach for learning causal networks. In: Proceedings of Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QU, pp. 285–295. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  40. Heckerman, D., Geiger, D.: Likelihoods and priors for Bayesian networks. Technical Report MSR-TR-95-54, Microsoft Research, Redmond, WA (Revised, November 1996)

    Google Scholar 

  41. Heckerman, D., Geiger, D., Chickering, D.: Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20, 197–243 (1995a)

    MATH  Google Scholar 

  42. Heckerman, D., Mamdani, A., Wellman, M.: Real-world applications of Bayesian networks. Communications of the ACM 38 (1995b)

    Google Scholar 

  43. Heckerman, D., Shachter, R.: Decision-theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research 3, 405–430 (1995)

    MATH  Google Scholar 

  44. Højsgaard, S., Skjøth, F., Thiesson, B.: User’s guide to BIOFROST. Technical report, Department of Mathematics and Computer Science, Aalborg, Denmark (1994)

    Google Scholar 

  45. Howard, R.: Decision analysis: Perspectives on inference, decision, and experimentation. Proceedings of the IEEE 58, 632–643 (1970)

    Article  MathSciNet  Google Scholar 

  46. Howard, R., Matheson, J.: Influence diagrams. In: Howard, R., Matheson, J. (eds.) Readings on the Principles and Applications of Decision Analysis, Strategic Decisions Group, Menlo Park, CA, vol. II, pp. 721–762 (1981)

    Google Scholar 

  47. Howard, R., Matheson, J. (eds.): The Principles and Applications of Decision Analysis, Strategic Decisions Group, Menlo Park, CA (1983)

    Google Scholar 

  48. Humphreys, P., Freedman, D.: The grand leap. British Journal for the Philosphy of Science 47, 113–118 (1996)

    Article  Google Scholar 

  49. Jaakkola, T., Jordan, M.: Computing upper and lower bounds on likelihoods in intractable networks. In: Proceedings of Twelfth Conference on Uncertainty in Artificial Intelligence, Portland, OR, pp. 340–348. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  50. Jensen, F.: An Introduction to Bayesian Networks. Springer, Heidelberg (1996)

    Google Scholar 

  51. Jensen, F., Andersen, S.: Approximations in Bayesian belief universes for knowledge based systems. Technical report, Institute of Electronic Systems, Aalborg University, Aalborg, Denmark (1990)

    Google Scholar 

  52. Jensen, F., Lauritzen, S., Olesen, K.: Bayesian updating in recursive graphical models by local computations. Computational Statisticals Quarterly 4, 269–282 (1990)

    MathSciNet  Google Scholar 

  53. Kass, R., Raftery, A.: Bayes factors. Journal of the American Statistical Association 90, 773–795 (1995)

    Article  MATH  Google Scholar 

  54. Kass, R., Tierney, L., Kadane, J.: Asymptotics in Bayesian computation. In: Bernardo, J., DeGroot, M., Lindley, D., Smith, A. (eds.) Bayesian Statistics, vol. 3, pp. 261–278. Oxford University Press, Oxford (1988)

    Google Scholar 

  55. Koopman, B.: On distributions admitting a sufficient statistic. Transactions of the American Mathematical Society 39, 399–409 (1936)

    Article  MATH  MathSciNet  Google Scholar 

  56. Korf, R.: Linear-space best-first search. Artificial Intelligence 62, 41–78 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  57. Lauritzen, S.: Lectures on Contingency Tables. University of Aalborg Press, Aalborg (1982)

    Google Scholar 

  58. Lauritzen, S.: Propagation of probabilities, means, and variances in mixed graphical association models. Journal of the American Statistical Association 87, 1098–1108 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  59. Lauritzen, S., Spiegelhalter, D.: Local computations with probabilities on graphical structures and their application to expert systems. J. Royal Statistical Society B 50, 157–224 (1988)

    MATH  MathSciNet  Google Scholar 

  60. Lauritzen, S., Thiesson, B., Spiegelhalter, D.: Diagnostic systems created by model selection methods: A case study. In: Cheeseman, P., Oldford, R. (eds.) AI and Statistics IV. Lecture Notes in Statistics, vol. 89, pp. 143–152. Springer, New York (1994)

    Google Scholar 

  61. MacKay, D.: Bayesian interpolation. Neural Computation 4, 415–447 (1992a)

    Article  Google Scholar 

  62. MacKay, D.: A practical Bayesian framework for backpropagation networks. Neural Computation 4, 448–472 (1992b)

    Article  Google Scholar 

  63. MacKay, D.: Choice of basis for the Laplace approximation. Technical report, Cavendish Laboratory, Cambridge, UK (1996)

    Google Scholar 

  64. Madigan, D., Garvin, J., Raftery, A.: Eliciting prior information to enhance the predictive performance of Bayesian graphical models. Communications in Statistics: Theory and Methods 24, 2271–2292 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  65. Madigan, D., Raftery, A.: Model selection and accounting for model uncertainty in graphical models using Occam’s window. Journal of the American Statistical Association 89, 1535–1546 (1994)

    Article  MATH  Google Scholar 

  66. Madigan, D., Raftery, A., Volinsky, C., Hoeting, J.: Bayesian model averaging. In: Proceedings of the AAAI Workshop on Integrating Multiple Learned Models, Portland, OR (1996)

    Google Scholar 

  67. Madigan, D., York, J.: Bayesian graphical models for discrete data. International Statistical Review 63, 215–232 (1995)

    Article  MATH  Google Scholar 

  68. Martin, J., VanLehn, K.: Discrete factor analysis: Learning hidden variables in bayesian networks. Technical report, Department of Computer Science, University of Pittsburgh, PA. (1995), http://bert.cs.pitt.edu/vanlehn

    Google Scholar 

  69. Meng, X., Rubin, D.: Using EM to obtain asymptotic variance-covariance matrices: The SEM algorithm. Journal of the American Statistical Association 86, 899–909 (1991)

    Article  Google Scholar 

  70. Neal, R.: Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto (1993)

    Google Scholar 

  71. Olmsted, S.: On representing and solving decision problems. PhD thesis, Department of Engineering-Economic Systems, Stanford University (1983)

    Google Scholar 

  72. Pearl, J.: Fusion, propagation, and structuring in belief networks. Artificial Intelligence 29, 241–288 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  73. Pearl, J.: Causal diagrams for empirical research. Biometrika 82, 669–710 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  74. Pearl, J., Verma, T.: A theory of inferred causation. In: Allen, J., Fikes, R., Sandewall, E. (eds.) Knowledge Representation and Reasoning: Proceedings of the Second International Conference, pp. 441–452. Morgan Kaufmann, New York (1991)

    Google Scholar 

  75. Pitman, E.: Sufficient statistics and intrinsic accuracy. Proceedings of the Cambridge Philosophy Society 32, 567–579 (1936)

    Article  Google Scholar 

  76. Raftery, A.: Bayesian model selection in social research. In: Marsden, P. (ed.) Sociological Methodology. Blackwells, Cambridge (1995)

    Google Scholar 

  77. Raftery, A.: Hypothesis testing and model selection, ch. 10. Chapman and Hall, Boca Raton (1996)

    Google Scholar 

  78. Ramamurthi, K., Agogino, A.: Real time expert system for fault tolerant supervisory control. In: Tipnis, V., Patton, E. (eds.) Computers in Engineering, American Society of Mechanical Engineers, Corte Madera, CA, pp. 333–339 (1988)

    Google Scholar 

  79. Ramsey, F.: Truth and probability. In: Braithwaite, R. (ed.) The Foundations of Methamatics and other Logical Essays, Humanities Press, London (1931); (Reprinted in Kyburg and Smokler, 1964)

    Google Scholar 

  80. Richardson, T.: Extensions of undirected and acyclic, directed graphical models. In: Proceedings of Sixth Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, pp. 407–419. Society for Artificial Intelligence in Statistics (1997)

    Google Scholar 

  81. Rissanen, J.: Stochastic complexity (with discussion). Journal of the Royal Statistical Society, Series B 49, 223–239, 253–265 (1987)

    MATH  MathSciNet  Google Scholar 

  82. Robins, J.: A new approach to causal interence in mortality studies with sustained exposure results. Mathematical Modelling 7, 1393–1512 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  83. Rubin, D.: Bayesian inference for causal effects: The role of randomization. Annals of Statistics 6, 34–58 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  84. Russell, S., Binder, J., Koller, D., Kanazawa, K.: Local learning in probabilistic networks with hidden variables. In: Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, Montreal, QU, pp. 1146–1152. Morgan Kaufmann, San Mateo (1995)

    Google Scholar 

  85. Saul, L., Jaakkola, T., Jordan, M.: Mean field theory for sigmoid belief networks. Journal of Artificial Intelligence Research 4, 61–76 (1996)

    MATH  Google Scholar 

  86. Savage, L.: The Foundations of Statistics. Dover, New York (1954)

    MATH  Google Scholar 

  87. Schervish, M.: Theory of Statistics. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  88. Schwarz, G.: Estimating the dimension of a model. Annals of Statistics 6, 461–464 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  89. Sewell, W., Shah, V.: Social class, parental encouragement, and educational aspirations. American Journal of Sociology 73, 559–572 (1968)

    Article  Google Scholar 

  90. Shachter, R.: Probabilistic inference and influence diagrams. Operations Research 36, 589–604 (1988)

    Article  MATH  Google Scholar 

  91. Shachter, R., Andersen, S., Poh, K.: Directed reduction algorithms and decomposable graphs. In: Proceedings of the Sixth Conference on Uncertainty in Artificial Intelligence, Boston, MA, pp. 237–244. Association for Uncertainty in Artificial Intelligence, Mountain View, CA (1990)

    Google Scholar 

  92. Shachter, R., Kenley, C.: Gaussian influence diagrams. Management Science 35, 527–550 (1989)

    Article  Google Scholar 

  93. Silverman, B.: Density Estimation for Statistics and Data Analysis. Chapman and Hall, New York (1986)

    MATH  Google Scholar 

  94. Singh, M., Provan, G.: Efficient learning of selective Bayesian network classifiers. Technical Report MS-CIS-95-36, Computer and Information Science Department, University of Pennsylvania, Philadelphia, PA (November 1995)

    Google Scholar 

  95. Spetzler, C., Stael von Holstein, C.: Probability encoding in decision analysis. Management Science 22, 340–358 (1975)

    Article  Google Scholar 

  96. Spiegelhalter, D., Dawid, A., Lauritzen, S., Cowell, R.: Bayesian analysis in expert systems. Statistical Science 8, 219–282 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  97. Spiegelhalter, D., Lauritzen, S.: Sequential updating of conditional probabilities on directed graphical structures. Networks 20, 579–605 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  98. Spirtes, P., Glymour, C., Scheines, R.: Causation, Prediction, and Search. Springer, New York (1993)

    MATH  Google Scholar 

  99. Spirtes, P., Meek, C.: Learning Bayesian networks with discrete variables from data. In: Proceedings of First International Conference on Knowledge Discovery and Data Mining, Montreal, QU. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  100. Suermondt, H., Cooper, G.: A combination of exact algorithms for inference on Bayesian belief networks. International Journal of Approximate Reasoning 5, 521–542 (1991)

    Article  MathSciNet  Google Scholar 

  101. Thiesson, B.: Accelerated quantification of Bayesian networks with incomplete data. In: Proceedings of First International Conference on Knowledge Discovery and Data Mining, Montreal, QU, pp. 306–311. Morgan Kaufmann, San Francisco (1995a)

    Google Scholar 

  102. Thiesson, B: Score and information for recursive exponential models with incomplete data. Technical report, Institute of Electronic Systems, Aalborg University, Aalborg, Denmark (1995b)

    Google Scholar 

  103. Thomas, A., Spiegelhalter, D., Gilks, W.: Bugs: A program to perform Bayesian inference using Gibbs sampling. In: Bernardo, J., Berger, J., Dawid, A., Smith, A. (eds.) Bayesian Statistics, vol. 4, pp. 837–842. Oxford University Press, Oxford (1992)

    Google Scholar 

  104. Tukey, J.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)

    MATH  Google Scholar 

  105. Tversky, A., Kahneman, D.: Judgment under uncertainty: Heuristics and biases. Science 185, 1124–1131 (1974)

    Article  Google Scholar 

  106. Verma, T., Pearl, J.: Equivalence and synthesis of causal models. In: Proceedings of Sixth Conference on Uncertainty in Artificial Intelligence, Boston, MA, pp. 220–227. Morgan Kaufmann, San Francisco (1990)

    Google Scholar 

  107. Whittaker, J.: Graphical Models in Applied Multivariate Statistics. John Wiley and Sons, Chichester (1990)

    MATH  Google Scholar 

  108. Winkler, R.: The assessment of prior distributions in Bayesian analysis. American Statistical Association Journal 62, 776–800 (1967)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Heckerman, D. (2008). A Tutorial on Learning with Bayesian Networks. In: Holmes, D.E., Jain, L.C. (eds) Innovations in Bayesian Networks. Studies in Computational Intelligence, vol 156. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85066-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85066-3_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85065-6

  • Online ISBN: 978-3-540-85066-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics