Skip to main content

Roles of the Endocannabinoid System in Learning and Memory

  • Chapter
  • First Online:
Behavioral Neurobiology of the Endocannabinoid System

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 1))

Abstract

The endocannabinoid system (ECS) plays a central role in the regulation of learning and memory processes. The fine-tuned regulation of neural transmission by the system is likely to be the mechanism underlying this important function. In this chapter, we review the data in the literature showing the direct involvement of the physiological activation of cannabinoid receptors in the modulation of different forms of learning and memory. When possible, we also address the likely mechanisms of this involvement. Finally, given the apparent special role of the ECS in the extinction of fear, we propose a reasonable model to assess how neuronal networks could be influenced by the endocannabinoids in these processes. Overall, the data reviewed indicate that, despite the enormous progress of recent years, much is still to be done to fully elucidate the mechanisms of the ECS influence on learning and memory processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AEA:

Anandamide

BA:

Basal nucleus of the amygdala

BLA:

Basolateral amygdala

CaMKII:

Calcium/calmodulin protein kinase II

CE:

Central nucleus of the amygdale

CR:

Conditioned response

CS:

Conditioned stimulus

DSI:

Depolarization-induced suppression of inhibition

ECS:

Endocannabinoid system

FAAH:

Fatty acid amide hydrolase

GPCR:

G protein-coupled receptor

ICM:

Intercalated cell masses

LA:

Lateral nucleus of the amygdala

LTP:

Long-term synaptic potentiation

PFC:

Prefrontal cortex

PI3K:

Phosphatidylinositol 3-kinase

THC:

Δ9-Tetrahydrocannabinol

US:

Unconditioned stimulus

References

  • Adam AS, Wenger T, Csillag A (2008) The cannabinoid CB1 receptor antagonist rimonabant dose-dependently inhibits memory recall in the passive avoidance task in domestic chicks (Gallus domesticus). Brain Res Bull 76:272–274

    PubMed  CAS  Google Scholar 

  • Alger E (2002) Retrograde signaling in the regulation of synaptic transmission: focus on endocannabinoids. Prog Neurobiol 68:247–286

    PubMed  CAS  Google Scholar 

  • Arenos JD, Musty RE, Bucci DJ (2006) Blockade of cannabinoid CB1 receptors alters contextual learning and memory. Eur J Pharmacol 539:177–183

    PubMed  CAS  Google Scholar 

  • Azad SC, Eder M, Marsicano G et al. (2003) Activation of the cannabinoid receptor type 1 decreases glutamatergic and GABAergic synaptic transmission in the lateral amygdala of the mouse. Learn Memory 10:116–128

    Google Scholar 

  • Azad SC, Monory K, Marsicano G et al. (2004) Circuitry for associative plasticity in the amygdala involves endocannabinoid signaling. J Neurosci 24:9953–9961

    PubMed  CAS  Google Scholar 

  • Bacci A, Huguenard JR, Prince DA (2004) Long-lasting self-inhibition of neocortical interneurons mediated by endocannabinoids. Nature 431:312–316

    PubMed  CAS  Google Scholar 

  • Bailey CH, Kandel ER, Si K (2004) The persistence of long-term memory: a molecular approach to self-sustaining changes in learning-induced synaptic growth. Neuron 44:49–57

    PubMed  CAS  Google Scholar 

  • Barco A, Bailey CH, Kandel ER (2006) Common molecular mechanisms in explicit and implicit memory. J Neurochem 97:1520–1533

    PubMed  CAS  Google Scholar 

  • Berretta S, Pantazopoulos H, Caldera M et al. (2005) Infralimbic cortex activation increases c-Fos expression in intercalated neurons of the amygdala. Neuroscience 132:943–953

    PubMed  CAS  Google Scholar 

  • Bilkei-Gorzo A, Racz I, Valverde O et al. (2005) Early age-related cognitive impairment in mice lacking cannabinoid CB1 receptors. Proc Natl Acad Sci USA 102:15670–15675

    PubMed  CAS  Google Scholar 

  • Bissiere S, Humeau Y, Luthi A (2003) Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat Neurosci 6:587–592

    PubMed  CAS  Google Scholar 

  • Brower LP, Glazier SC (1975) Localization of heart poisons in the monarch butterfly. Science 188:19–25

    PubMed  CAS  Google Scholar 

  • Bucherelli C, Baldi E, Mariottini C et al. (2006) Aversive memory reactivation engages in the amygdala only some neurotransmitters involved in consolidation. Learn Memory 13:426–430

    CAS  Google Scholar 

  • Bura SA, Castane A, Ledent C et al. (2007) Genetic and pharmacological approaches to evaluate the interaction between the cannabinoid and cholinergic systems in cognitive processes. Br J Pharmacol 150:758–765

    PubMed  CAS  Google Scholar 

  • Cannich A, Wotjak CT, Kamprath K et al. (2004) CB1 cannabinoid receptors modulate kinase and phosphatase activity during extinction of conditioned fear in mice. Learn Memory 11:625–632

    Google Scholar 

  • Carlson G, Wang Y, Alger BE (2002) Endocannabinoids facilitate the induction of LTP in the hippocampus. Nat Neurosci 5:723–724

    PubMed  CAS  Google Scholar 

  • Carter E, Wang XJ (2007) Cannabinoid-mediated disinhibition and working memory: dynamical interplay of multiple feedback mechanisms in a continuous attractor model of prefrontal cortex. Cereb Cortex 17(Suppl 1):i16–i26

    PubMed  Google Scholar 

  • Castellano C, Rossi-Arnaud C, Cestari V et al. (2003) Cannabinoids and memory: animal studies. Curr Drug Targets CNS Neurol Disord 2:389–402

    PubMed  CAS  Google Scholar 

  • Chevaleyre V, Takahashi KA, Castillo PE (2006) Endocannabinoid-mediated synaptic plasticity in the CNS. Annu Rev Neurosci 29:37–75

    PubMed  CAS  Google Scholar 

  • Chhatwal JP, Davis M, Maguschak KA et al. (2005) Enhancing cannabinoid neurotransmission augments the extinction of conditioned fear. Neuropsychopharmacology 30:516–524

    PubMed  CAS  Google Scholar 

  • Clarke JR, Rossato JI, Monteiro S et al. (2008) Posttraining activation of CB1 cannabinoid receptors in the CA1 region of the dorsal hippocampus impairs object recognition long-term memory. Neurobiol Learn Memory 90(2):374–381

    CAS  Google Scholar 

  • Collins DR, Pare D (1999a) Reciprocal changes in the firing probability of lateral and central medial amygdala neurons. J Neurosci 19:836–844

    PubMed  CAS  Google Scholar 

  • Collins DR, Pare D (1999b) Spontaneous and evoked activity of intercalated amygdala neurons. Eur J Neurosci 11:3441–3448

    PubMed  CAS  Google Scholar 

  • Cravatt BF, Demarest K, Patricelli MP et al. (2001) Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc Natl Acad Sci USA 98:9371–9376

    PubMed  CAS  Google Scholar 

  • de Oliveira AL, de Oliveira LF, Camboim C et al. (2005) Amnestic effect of intrahippocampal AM251, a CB1-selective blocker, in the inhibitory avoidance, but not in the open field habituation task, in rats. Neurobiol Learn Memory 83:119–124

    Google Scholar 

  • Deadwyler SA, Hampson RE (2008) Endocannabinoids modulate encoding of sequential memory in the rat hippocampus. Psychopharmacology (Berl) 198:577–586

    CAS  Google Scholar 

  • Deadwyler SA, Goonawardena AV, Hampson RE (2007) Short-term memory is modulated by the spontaneous release of endocannabinoids: evidence from hippocampal population codes. Behav Pharmacol 18:571–580

    PubMed  CAS  Google Scholar 

  • Debiec J, Ledoux JE, Nader K (2002) Cellular and systems reconsolidation in the hippocampus. Neuron 36:527–538

    PubMed  CAS  Google Scholar 

  • Degroot A, Kofalvi A, Wade MR et al. (2006) CB1 receptor antagonism increases hippocampal acetylcholine release: site and mechanism of action. Mol Pharmacol 70:1236–1245

    PubMed  CAS  Google Scholar 

  • Devane WA, Hanus L, Breuer A et al. (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    PubMed  CAS  Google Scholar 

  • Di Marzo V, De Petrocellis L, Fezza F et al. (2002) Anandamide receptors. Prostag Leukot Ess Fatty Acids 66:377–391

    Google Scholar 

  • Domenici MR, Azad SC, Marsicano G et al. (2006) Cannabinoid receptor type 1 located on presynaptic terminals of principal neurons in the forebrain controls glutamatergic synaptic transmission. J Neurosci 26:5794–5799

    PubMed  CAS  Google Scholar 

  • Dunning J, During MJ (2003) Molecular mechanisms of learning and memory. Expert Rev Mol Med 5:1–11

    PubMed  Google Scholar 

  • Duvarci S, Nader K (2004) Characterization of fear memory reconsolidation. J Neurosci 24:9269–9275

    PubMed  CAS  Google Scholar 

  • Floresco SB, Magyar O (2006) Mesocortical dopamine modulation of executive functions: beyond working memory. Psychopharmacology (Berl) 188:567–585

    CAS  Google Scholar 

  • Floresco SB, Magyar O, Ghods-Sharifi S et al. (2006) Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsychopharmacology 31:297–309

    PubMed  CAS  Google Scholar 

  • Freund TF, Katona I, Piomelli D (2003) Role of endogenous cannabinoids in synaptic signaling. Physiol Rev 83:1017–1066

    PubMed  CAS  Google Scholar 

  • Fride E (2005) Endocannabinoids in the central nervous system: from neuronal networks to behavior. Curr Drug Targets CNS Neurol Disord 4:633–642

    PubMed  CAS  Google Scholar 

  • Fujiwara M, Egashira N (2004) New perspectives in the studies on endocannabinoid and cannabis: abnormal behaviors associate with CB1 cannabinoid receptor and development of therapeutic application. J Pharmacol Sci 96:362–366

    PubMed  CAS  Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    CAS  Google Scholar 

  • Garcia J, Kimeldorf DJ, Koelling RA (1955) Conditioned aversion to saccharin resulting from exposure to gamma radiation. Science 122:157–158

    PubMed  CAS  Google Scholar 

  • Harris JA, Westbrook RF (1998) Evidence that GABA transmission mediates context-specific extinction of learned fear. Psychopharmacology (Berl) 140:105–115

    CAS  Google Scholar 

  • Herry C, Ciocchi S, Senn V et al. (2008) Switching on and off fear by distinct neuronal circuits. Nature 454:600–606

    PubMed  CAS  Google Scholar 

  • Hilário MRF, Clouse E, Yin HH et al. (2007) Endocannabinoid signaling is critical for habit formation. Front Integr Neurosci 1:6

    PubMed  Google Scholar 

  • Hill MN, Froese LM, Morrish AC et al. (2006) Alterations in behavioral flexibility by cannabinoid CB1 receptor agonists and antagonists. Psychopharmacology (Berl) 187:245–259

    CAS  Google Scholar 

  • Holter SM, Kallnik M, Wurst W et al. (2005) Cannabinoid CB1 receptor is dispensable for memory extinction in an appetitively-motivated learning task. Eur J Pharmacol 510:69–74

    PubMed  Google Scholar 

  • Howlett AC, Barth F, Bonner TI et al. (2002) International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol Rev 54:161–202

    PubMed  CAS  Google Scholar 

  • Iversen L (2003a) Cannabis and the brain. Brain 126:1252–1270

    PubMed  Google Scholar 

  • Iversen L (2003b) Comparing cannabis with tobacco: arithmetic does not add up. Br Med J 327:165

    Google Scholar 

  • Kamprath K, Wotjak CT (2004) Nonassociative learning processes determine expression and extinction of conditioned fear in mice. Learn Memory 11:770–786

    Google Scholar 

  • Kamprath K, Marsicano G, Tang J et al. (2006) Cannabinoid CB1 receptor mediates fear extinction via habituation-like processes. J Neurosci 26:6677–6686

    PubMed  CAS  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialog between genes and synapses. Biosci Rep 21:565–611

    PubMed  CAS  Google Scholar 

  • Kandel ER, Schwartz JH, Jessel TM (2000) Principles of neural science. McGraw-Hill, New York

    Google Scholar 

  • Kobilo T, Hazvi S, Dudai Y (2007) Role of cortical cannabinoid CB1 receptor in conditioned taste aversion memory. Eur J Neurosci 25:3417–3421

    PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    PubMed  CAS  Google Scholar 

  • Lichtman AH (2000) SR 141716A enhances spatial memory as assessed in a radial-arm maze task in rats. Eur J Pharmacol 404:175–179

    PubMed  CAS  Google Scholar 

  • Likhtik E, Pelletier JG, Paz R et al. (2005) Prefrontal control of the amygdala. J Neurosci 25:7429–7437

    PubMed  CAS  Google Scholar 

  • Lin CH, Yeh SH, Lin CH et al. (2001) A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31:841–851

    PubMed  CAS  Google Scholar 

  • Lin CH, Lee CC, Gean PW (2003a) Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol Pharmacol 63:44–52

    PubMed  CAS  Google Scholar 

  • Lin CH, Yeh SH, Leu TH et al. (2003b) Identification of calcineurin as a key signal in the extinction of fear memory. J Neurosci 23:1574–1579

    PubMed  CAS  Google Scholar 

  • Lin HC, Mao SC, Su CL et al. (2009) The role of prefrontal cortex CB1 receptors in the modulation of fear memory. Cereb Cortex 19(1):165–175

    PubMed  CAS  Google Scholar 

  • Lu KT, Walker DL, Davis M (2001) Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. J Neurosci 21:RC162–RC166

    PubMed  CAS  Google Scholar 

  • Lutz B (2002) Molecular biology of cannabinoid receptors. Prostag Leukot Ess Fatty Acids 66:123–142

    CAS  Google Scholar 

  • Maccarrone M, Valverde O, Barbaccia ML et al. (2002) Age-related changes of anandamide metabolism in CB1 cannabinoid receptor knockout mice: correlation with behaviour. Eur J Neurosci 15:1178–1186

    PubMed  Google Scholar 

  • Maejima T, Ohno-Shosaku T, Kano M (2001) Endogenous cannabinoid as a retrograde messenger from depolarized postsynaptic neurons to presynaptic terminals. Neurosci Res 40:205–210

    PubMed  CAS  Google Scholar 

  • Mallet PE, Beninger RJ (1998) The cannabinoid CB1 receptor antagonist SR141716A attenuates the memory impairment produced by delta9-tetrahydrocannabinol or anandamide. Psychopharmacology (Berl) 140:11–19

    CAS  Google Scholar 

  • Mansuy IM (2003) Calcineurin in memory and bidirectional plasticity. Biochem Biophys Res Commun 311:1195–1208

    PubMed  CAS  Google Scholar 

  • Mansuy IM, Mayford M, Jacob B et al. (1998) Restricted and regulated overexpression reveals calcineurin as a key component in the transition from short-term to long-term memory. Cell 92:39–49

    PubMed  CAS  Google Scholar 

  • Maren S (1999) Long-term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci 22:561–567

    PubMed  CAS  Google Scholar 

  • Marks I, Tobena A (1990) Learning and unlearning fear: a clinical and evolutionary perspective. Neurosci Biobehav Rev 14:365–384

    PubMed  CAS  Google Scholar 

  • Marsicano G, Lutz B (1999) Expression of the cannabinoid receptor CB1 in distinct neuronal subpopulations in the adult mouse forebrain. Eur J Neurosci 11:4213–4225

    PubMed  CAS  Google Scholar 

  • Marsicano G, Lutz B (2006) Neuromodulatory functions of the endocannabinoid system. J Endocrinol Invest 29:27–46

    PubMed  CAS  Google Scholar 

  • Marsicano G, Wotjak CT, Azad SC et al. (2002) The endogenous cannabinoid system controls extinction of aversive memories. Nature 418:530–534

    PubMed  CAS  Google Scholar 

  • Martin M, Ledent C, Parmentier M et al. (2002) Involvement of CB1 cannabinoid receptors in emotional behaviour. Psychopharmacology (Berl) 159:379–387

    CAS  Google Scholar 

  • Massa F, Marsicano G, Hermann H et al. (2004) The endogenous cannabinoid system protects against colonic inflammation. J Clin Invest 113:1202–1209

    PubMed  CAS  Google Scholar 

  • Matsuda LA, Lolait SJ, Brownstein MJ et al. (1990) Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature 346:561–564

    PubMed  CAS  Google Scholar 

  • McDonald AJ (1998) Cortical pathways to the mammalian amygdala. Prog Neurobiol 55:257–332

    PubMed  CAS  Google Scholar 

  • McGaugh JL (2000) Memory – a century of consolidation. Science 287:248–251

    PubMed  CAS  Google Scholar 

  • McGaugh JL, Castellano C, Brioni J (1990) Picrotoxin enhances latent extinction of conditioned fear. Behav Neurosci 104:264–267

    PubMed  CAS  Google Scholar 

  • Mechoulam R, Ben Shabat S, Hanus L et al. (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    PubMed  CAS  Google Scholar 

  • Mikics E, Barsy B, Barsvari B et al. (2005) Behavioral specificity of non-genomic glucocorticoid effects in rats: effects on risk assessment in the elevated plus-maze and the open-field. Horm Behav 48:152–162

    PubMed  CAS  Google Scholar 

  • Mikics E, Dombi T, Barsvari B et al. (2006) The effects of cannabinoids on contextual conditioned fear in CB1 knockout and CD1 mice. Behav Pharmacol 17:223–230

    PubMed  CAS  Google Scholar 

  • Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74

    PubMed  CAS  Google Scholar 

  • Myers KM, Davis M (2002) Behavioral and neural analysis of extinction. Neuron 36:567–584

    PubMed  CAS  Google Scholar 

  • Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12:120–150

    PubMed  CAS  Google Scholar 

  • Nader K, Schafe GE, Ledoux JE (2000) The labile nature of consolidation theory. Nat Rev Neurosci 1:216–219

    PubMed  CAS  Google Scholar 

  • Niyuhire F, Varvel SA, Thorpe AJ et al. (2007) The disruptive effects of the CB1 receptor antagonist rimonabant on extinction learning in mice are task-specific. Psychopharmacology (Berl) 191:223–231

    CAS  Google Scholar 

  • Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58:389–462

    PubMed  CAS  Google Scholar 

  • Packard MG, McGaugh JL (1992) Double dissociation of fornix and caudate nucleus lesions on acquisition of two water maze tasks: further evidence for multiple memory systems. Behav Neurosci 106:439–446

    PubMed  CAS  Google Scholar 

  • Pagotto U, Cervino C, Vicennati V et al. (2006) How many sites of action for endocannabinoids to control energy metabolism? Int J Obes (Lond) 30(Suppl 1):S39–S43

    CAS  Google Scholar 

  • Pare D, Quirk GJ, LeDoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92:1–9

    PubMed  Google Scholar 

  • Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215

    PubMed  CAS  Google Scholar 

  • Pezze MA, Feldon J (2004) Mesolimbic dopaminergic pathways in fear conditioning. Prog Neurobiol 74:301–320

    PubMed  CAS  Google Scholar 

  • Phelps EA, LeDoux JE (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–187

    PubMed  CAS  Google Scholar 

  • Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72

    PubMed  Google Scholar 

  • Ranganathan M, D'Souza DC (2006) The acute effects of cannabinoids on memory in humans: a review. Psychopharmacology (Berl) 188:425–444

    CAS  Google Scholar 

  • Reibaud M, Obinu MC, Ledent C et al. (1999) Enhancement of memory in cannabinoid CB1 receptor knock-out mice. Eur J Pharmacol 379:R1–R2

    PubMed  CAS  Google Scholar 

  • Reich CG, Mohammadi MH, Alger BE (2008) Endocannabinoid modulation of fear responses: learning and state-dependent performance effects. J Psychopharmacol. 22:761–768

    Google Scholar 

  • Riedel G, Davies SN (2005) Cannabinoid function in learning, memory and plasticity. Handb Exp Pharmacol 168:445–477

    PubMed  CAS  Google Scholar 

  • Rinaldi-Carmona M, Barth F, Heaulme M et al. (1994) SR141716A, a potent and selective antagonist of the brain cannabinoid receptor. FEBS Lett 350:240–244

    PubMed  CAS  Google Scholar 

  • Robinson L, Killop-Smith S, Ross NL et al. (2008) Hippocampal endocannabinoids inhibit spatial learning and limit spatial memory in rats. Psychopharmacology (Berl) 198:551–563

    CAS  Google Scholar 

  • Rosenkranz JA, Grace AA (2002) Cellular mechanisms of infralimbic and prelimbic prefrontal cortical inhibition and dopaminergic modulation of basolateral amygdala neurons in vivo. J Neurosci 22:324–337

    PubMed  CAS  Google Scholar 

  • Rosenkranz JA, Moore H, Grace AA (2003) The prefrontal cortex regulates lateral amygdala neuronal plasticity and responses to previously conditioned stimuli. J Neurosci 23:11054–11064

    PubMed  CAS  Google Scholar 

  • Rueda-Orozco PE, Montes-Rodriguez CJ, Soria-Gomez E et al. (2008a) Impairment of endocannabinoids activity in the dorsolateral striatum delays extinction of behavior in a procedural memory task in rats. Neuropharmacology 55(1):55–62

    PubMed  CAS  Google Scholar 

  • Rueda-Orozco PE, Soria-Gomez E, Montes-Rodriguez CJ et al. (2008b) A potential function of endocannabinoids in the selection of a navigation strategy by rats. Psychopharmacology (Berl) 198:565–576

    CAS  Google Scholar 

  • Sara SJ (2000) Retrieval and reconsolidation: toward a neurobiology of remembering. Learn Memory 7:73–84

    CAS  Google Scholar 

  • Shiflett MW, Rankin AZ, Tomaszycki ML et al. (2004) Cannabinoid inhibition improves memory in food-storing birds, but with a cost. Proc Biol Sci 271:2043–2048

    PubMed  CAS  Google Scholar 

  • Soria G, Mendizabal V, Tourino C et al. (2005) Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology 30:1670–1680

    PubMed  CAS  Google Scholar 

  • Squire LR, Berq D, du Lac S et al. (2008) Fundamentals of Neuroscience, 3rd edn

    Google Scholar 

  • Stefani MR, Moghaddam B (2003) Distinct contributions of glutamate receptor subtypes to cognitive set-shifting abilities in the rat. Ann N Y Acad Sci 1003:464–467

    PubMed  Google Scholar 

  • Stefani MR, Groth K, Moghaddam B (2003) Glutamate receptors in the rat medial prefrontal cortex regulate set-shifting ability. Behav Neurosci 117:728–737

    PubMed  CAS  Google Scholar 

  • Straiker A, Mackie K (2007) Metabotropic suppression of excitation in murine autaptic hippocampal neurons. J Physiol 578:773–785

    PubMed  CAS  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A et al. (1995) 2-Arachidonoylglycerol: a possible endogenous cannabinoid receptor ligand in brain. Biochem Biophys Res Commun 215:89–97

    PubMed  CAS  Google Scholar 

  • Suzuki A, Josselyn SA, Frankland PW et al. (2004) Memory reconsolidation and extinction have distinct temporal and biochemical signatures. J Neurosci 24:4787–4795

    PubMed  CAS  Google Scholar 

  • Suzuki A, Mukawa T, Tsukagoshi A et al. (2008) Activation of LVGCCs and CB1 receptors required for destabilization of reactivated contextual fear memories. Learn Memory 15:426–433

    CAS  Google Scholar 

  • Sweatt JD (2001) The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 76:1–10

    PubMed  CAS  Google Scholar 

  • Takahashi RN, Pamplona FA, Fernandes MS (2005) The cannabinoid antagonist SR141716A facilitates memory acquisition and consolidation in the mouse elevated T-maze. Neurosci Lett 380:270–275

    PubMed  CAS  Google Scholar 

  • Terranova JP, Storme JJ, Lafon N et al. (1996) Improvement of memory in rodents by the selective CB1 cannabinoid receptor antagonist, SR 141,716. Psychopharmacology (Berl) 126:165–172

    CAS  Google Scholar 

  • Thiemann G, Fletcher BC, Ledent C et al. (2007) The genetic versus pharmacological invalidation of the cannabinoid CB(1) receptor results in differential effects on 'non-associative' memory and forebrain monoamine concentrations in mice. Neurobiol Learn Memory 88:416–423

    CAS  Google Scholar 

  • Van Gaal LF, Rissanen AM, Scheen AJ et al. (2005) Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 365:1389–1397

    PubMed  Google Scholar 

  • Van Sickle MD, Duncan M, Kingsley PJ et al. (2005) Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science 310:329–332

    PubMed  Google Scholar 

  • Varvel SA, Lichtman AH (2002) Evaluation of CB(1) Receptor Knockout Mice in the Morris Water Maze. J Pharmacol Exp Ther 301:915–924

    PubMed  CAS  Google Scholar 

  • Varvel SA, Anum EA, Lichtman AH (2005) Disruption of CB(1) receptor signaling impairs extinction of spatial memory in mice. Psychopharmacology (Berl) 179:863–872

    CAS  Google Scholar 

  • Varvel SA, Cravatt BF, Engram AE et al. (2006) Fatty acid amide hydrolase (-/-) mice exhibit an increased sensitivity to the disruptive effects of anandamide or oleamide in a working memory water maze task. J Pharmacol Exp Ther 317:251–257

    PubMed  CAS  Google Scholar 

  • Varvel SA, Wise LE, Niyuhire F et al. (2007) Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. Neuropsychopharmacology 32:1032–1041

    PubMed  CAS  Google Scholar 

  • Welzl H, D'Adamo P, Lipp HP (2001) Conditioned taste aversion as a learning and memory paradigm. Behav Brain Res 125:205–213

    PubMed  CAS  Google Scholar 

  • White NM, McDonald RJ (2002) Multiple parallel memory systems in the brain of the rat. Neurobiol Learn Memory 77:125–184

    Google Scholar 

  • Wilson RI, Nicoll RA (2001) Endogenous cannabinoids mediate retrograde signalling at hippocampal synapses. Nature 410:588–592

    PubMed  CAS  Google Scholar 

  • Winsauer PJ, Lambert P, Moerschbaecher JM (1999) Cannabinoid ligands and their effects on learning and performance in rhesus monkeys. Behav Pharmacol 10:497–511

    PubMed  CAS  Google Scholar 

  • Wise LE, Iredale PA, Stokes RJ et al. (2007) Combination of rimonabant and donepezil prolongs spatial memory duration. Neuropsychopharmacology 32:1805–1812

    PubMed  CAS  Google Scholar 

  • Wolff MC, Leander JD (2003) SR141716A, a cannabinoid CB1 receptor antagonist, improves memory in a delayed radial maze task. Eur J Pharmacol 477:213–217

    PubMed  CAS  Google Scholar 

  • Wotjak CT (2005) Role of endogenous cannabinoids in cognition and emotionality. Mini Rev Med Chem 5:659–670

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Marsicano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Marsicano, G., Lafenêtre, P. (2009). Roles of the Endocannabinoid System in Learning and Memory. In: Kendall, D., Alexander, S. (eds) Behavioral Neurobiology of the Endocannabinoid System. Current Topics in Behavioral Neurosciences, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88955-7_8

Download citation

Publish with us

Policies and ethics