Skip to main content
Book cover

Centromere pp 77–101Cite as

The Role of ncRNA in Centromeres: A Lesson from Marsupials

  • Chapter
  • First Online:

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 48))

Abstract

Though centromeres have been thought to be comprised of repetitive, transcriptionally inactive DNA, new evidence suggests that eukaryotic centromeres produce a variety of transcripts and that RNA is essential for centromere competence. It has been proposed that centromere satellite transcripts play an essential role in centromere function through demarcation of the kinetochore-binding domain. However, the regional limits and regulation of transcription within the mammalian centromere are unknown. Analysis of transcriptional domains within the centromere in mammalian models is impeded by the unbridgeable expanse of satellite monomers throughout the pericentromere. The comparatively small size of the wallaby centromere and the evolutionary role of the centromere in marsupial speciation events position the wallaby centromere as a tractable and valuable mammalian centromere model. We highlight the current understanding of the wallaby centromere and the role of transcription in centromere function.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alonso A, Mahmood R, Li S, Cheung F, Yoda K, Warburton PE (2003) Genomic microarray analysis reveals distinct locations for the CENP-A binding domains in three human chromosome 13q32 neocentromeres. Hum Mol Genet 12:2711–2721

    PubMed  CAS  Google Scholar 

  • Amor DJ, Choo KH (2002) Neocentromeres role in human disease, evolution and, centromere study. Am J Hum Genet 71:695–714

    PubMed  Google Scholar 

  • Amor DJ, Bentley K, Ryan J, Perry J, Wong L, Slater H, Choo KH (2004) Human centromere repositioning in progress. Proc Natl Acad Sci USA 101:6542–6547

    PubMed  CAS  Google Scholar 

  • Barry AE, Howman EV, Cancilla MR, Saffery R, Choo KH (1999) Sequence analysis of an 80 kb human neocentromere. Hum Mol Genet 8:217–227

    PubMed  CAS  Google Scholar 

  • Belyaeva TA, Vishnivetsky PN, Potapov VA, Zhelezova AI, Romashchenko AG (1992) Species and tissue-specific transcription of complex, highly repeated satellite-like Bsp elements in the fox genome. Mamm Genome 3:233–236

    PubMed  CAS  Google Scholar 

  • Bininda-Emonds OR, Cardillo M, Jones KE, MacPhee RD, Beck RM, Grenyer R, Price SA, Vos RA, Gittleman JL, Purvis A (2007) The delayed rise of present-day mammals. Nature 446:507–512

    PubMed  CAS  Google Scholar 

  • Bonaccorsi S, Gatti M, Pisano C, Lohe A (1990) Transcription of a satellite DNA on two Y chromosome loops of Drosophila melanogaster. Chromosoma 99:260–266

    PubMed  CAS  Google Scholar 

  • Bouzinba-Segard H, Guais A, Francastel C (2006) Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. Proc Natl Acad Sci USA 103:8709–8714

    PubMed  CAS  Google Scholar 

  • Bulazel K, Metcalfe C, Ferreri GC, Yu J, Eldridge MD, O’Neill RJ (2006) Cytogenetic and molecular evaluation of centromere-associated DNA sequences from a marsupial (Macropodidae: Macropus rufogriseus) X chromosome. Genetics 172:1129–1137

    PubMed  CAS  Google Scholar 

  • Bulazel KV, Ferreri GC, Eldridge MD, O’ Neill RJ (2007) Species-specific shifts in centromere sequence composition are coincident with breakpoint reuse in karyotypically divergent lineages. Genome Biol 8:R170

    PubMed  Google Scholar 

  • Carone DM, Longo MS, Ferreri GC, Hall L, Harris M, Shook N, Bulazel KV, Carone BR, Obergfell C, O’Neill MJ, O’Neill RJ. (2009) A new class of retroviral and satellite encoded small RNAs emanates from mammalian centromeres. Chromosoma Feb; 118(1):113–25

    Google Scholar 

  • Cheng Z, Dong F, Langdon T, Ouyang S, Buell CR, Gu M, Blattner FR, Jiang J (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704

    PubMed  CAS  Google Scholar 

  • Choo K (1997a) The centromere. Oxford University Press, Oxford

    Google Scholar 

  • Choo KH (1997b) Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet 61:1225–1233

    CAS  Google Scholar 

  • Chueh AC, Wong LH, Wong N, Choo KH (2005) Variable and hierarchical size distribution of L1-retroelement-enriched CENP-A clusters within a functional human neocentromere. Hum Mol Genet 14:85–93

    PubMed  CAS  Google Scholar 

  • Coffin JM, Hughes SH, Varmus HE (1997) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Csink AK, Henikoff S (1998) Something from nothing: the evolution and utility of satellite repeats. Trends Genet 14:200–204

    PubMed  CAS  Google Scholar 

  • Dawe RK (2003) RNA interference, transposons, and the centromere. Plant Cell 15:297–301

    PubMed  CAS  Google Scholar 

  • Diaz MO, Barsacchi-Pilone G, Mahon KA, Gall JG (1981) Transcripts from both strands of a satellite DNA occur on lampbrush chromosome loops of the newt Notophthalmus. Cell 24:649–659

    PubMed  CAS  Google Scholar 

  • du Sart D, Cancilla MR, Earle E, Mao JI, Saffery R, Tainton KM, Kalitsis P, Martyn J, Barry AE, Choo KH (1997) A functional neo-centromere formed through activation of a latent human centromere and consisting of non-alpha-satellite DNA. Nat Genet 16:144–153

    PubMed  CAS  Google Scholar 

  • Eichler EE (1999) Repetitive conundrums of centromere structure and function. Hum Mol Genet 8:151–155

    PubMed  CAS  Google Scholar 

  • Eldridge MD, Close RL (1993) Radiation of chromosome shuffles. Curr Opin Genet Dev 3:915–922

    PubMed  CAS  Google Scholar 

  • Elgin SC, Grewal SI (2003) Heterochromatin: silence is golden. Curr Biol 13:R895–R898

    PubMed  CAS  Google Scholar 

  • Epstein LM, Mahon KA, Gall JG (1986) Transcription of a satellite DNA in the newt. J Cell Biol 103:1137–1144

    PubMed  CAS  Google Scholar 

  • Ferreri GC, Marzelli M, Rens W, O’Neill RJ (2004) A centromere-specific retroviral element associated with breaks of synteny in macropodine marsupials. Cytogenet Genome Res 107:115–118

    PubMed  CAS  Google Scholar 

  • Ferreri GC, Liscinsky DM, Mack JA, Eldridge MD, O’Neill RJ (2005) Retention of latent centromeres in the Mammalian genome. J Hered 96:217–224

    PubMed  CAS  Google Scholar 

  • Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, Nakayama T, Oshimura M (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nature Cell Biol 6:784–791

    PubMed  CAS  Google Scholar 

  • Fuks F, Hurd PJ, Wolf D, Nan X, Bird AP, Kouzarides T (2003) The methyl-CpG-binding protein MeCP2 links DNA methylation to histone methylation. J Biol Chem 278:4035–4040

    PubMed  CAS  Google Scholar 

  • Garagna S, Zuccotti M, Capanna E, Redi CA (2002) High-resolution organization of mouse telomeric and pericentromeric DNA. Cytogenet Genome Res 96:125–129

    PubMed  CAS  Google Scholar 

  • Hall IM, Shankaranarayana GD, Noma K, Ayoub N, Cohen A, Grewal SI (2002) Establishment and maintenance of a heterochromatin domain. Science 297:2232–2237

    PubMed  CAS  Google Scholar 

  • Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404:293–296

    PubMed  CAS  Google Scholar 

  • Hayman DL (1977) Chromosome number-constancy and variation. In Gilmore D (ed) The biology of Marsupials. Macmillan, London

    Google Scholar 

  • Hayman DL (1990) Marsupial cytogenetics. In Cooper DW (ed) Mammals from pches and eggs: genetics, breeding and evolution of Marsupials and Monotremes. CSIRO, Melbourne

    Google Scholar 

  • Heard E (2005) Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr Opin Genet Dev 15:482–489

    PubMed  CAS  Google Scholar 

  • Henikoff S, Malik HS (2002) Selfish drivers. Nature 417:227

    PubMed  CAS  Google Scholar 

  • Henikoff S, Ahmad K, Malik HS (2001) The centromere paradox: stable inheritance with rapidly evolving DNA. Science 293:1098–1102

    PubMed  CAS  Google Scholar 

  • Hudson DF, Fowler KJ, Earle E, Saffery R, Kalitsis P, Trowell H, Hill J, Wreford NG, de Kretser DM, Cancilla MR, Howman E, Hii L, Cutts SM, Irvine DV, Choo KH (1998) Centromere protein B null mice are mitotically and meiotically normal but have lower body and testis weights. J Cell Biol 141:309–319

    PubMed  CAS  Google Scholar 

  • Jiang J, Birchler JA, Parrott WA, Dawe RK (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575

    PubMed  CAS  Google Scholar 

  • Jin W, Melo JR, Nagaki K, Talbert PB, Henikoff S, Dawe RK, Jiang J (2004) Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell 16:571–581

    PubMed  CAS  Google Scholar 

  • Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T, Livingston DM, Rajewsky K (2005) Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19:489–501

    PubMed  CAS  Google Scholar 

  • Kapitonov VV, Jurka J (1999) Molecular paleontology of transposable elements from Arabidopsis thaliana. Genetica 107:27–37

    PubMed  CAS  Google Scholar 

  • Kipling D, Warburton PE (1997) Centromeres, CENP-B and tigger too. Trends Genet 13:141–145

    PubMed  CAS  Google Scholar 

  • Knegt AC, Li S, Engelen JJ, Bijlsma EK, Warburton PE (2003) Prenatal diagnosis of a karyotypically normal pregnancy in a mother with a supernumerary neocentric 13q21 ® 13q22 chromosome and balancing reciprocal deletion. Prenat Diagn 23:215–220

    PubMed  CAS  Google Scholar 

  • Kuznetsova I, Podgornaya O, Ferguson-Smith MA (2006) High-resolution organization of mouse centromeric and pericentromeric DNA. Cytogenet Genome Res 112:248–255

    PubMed  CAS  Google Scholar 

  • Lachner M, Jenuwein T (2002) The many faces of histone lysine methylation. Curr Opin Cell Biol 14:286–298

    PubMed  CAS  Google Scholar 

  • Lachner M, O’Sullivan RJ, Jenuwein T (2003) An epigenetic road map for histone lysine methylation. J Cell Sci 116:2117–2124

    PubMed  CAS  Google Scholar 

  • Lam AL, Boivin CD, Bonney CF, Rudd MK, Sullivan BA (2006) Human centromeric chromatin is a dynamic chromosomal domain that can spread over noncentromeric DNA. Proc Natl Acad Sci USA 103:4186–4191

    PubMed  CAS  Google Scholar 

  • Lee HR, Neumann P, Macas J, Jiang J (2006) Transcription and evolutionary dynamics of the centromeric satellite repeat CentO in rice. Mol Biol Evol 23:2505–2520

    PubMed  CAS  Google Scholar 

  • Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L, Kubicek S, Chen T, Li E, Jenuwein T, Peters AH (2003) Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr Biol 13:1192–1200

    PubMed  CAS  Google Scholar 

  • Li YC, Lee C, Hsu TH, Li SY, Lin CC (2000) Direct visualization of the genomic distribution and organization of two cervid centromeric satellite DNA families. Cytogenet Cell Genet 89:192–198

    PubMed  CAS  Google Scholar 

  • Li YX, Kirby ML (2003) Coordinated and conserved expression of alphoid repeat and alphoid repeat-tagged coding sequences. Dev Dyn 228:72–81

    PubMed  CAS  Google Scholar 

  • Lo AW, Craig JM, Saffery R, Kalitsis P, Irvine DV, Earle E, Magliano DJ, Choo KH (2001a) A 330 kb CENP-A binding domain and altered replication timing at a human neocentromere. EMBO J 20:2087–2096

    CAS  Google Scholar 

  • Lo AW, Magliano DJ, Sibson MC, Kalitsis P, Craig JM, Choo KH (2001b) A novel chromatin immunoprecipitation and array (CIA) analysis identifies a 460-kb CENP-A-binding neocentromere DNA. Genome Res 11:448–457

    CAS  Google Scholar 

  • Lowry PS, Eldridge MDB, Johnston PG (1994) Genetic analysis of a female macropodid hybrid (macropus agilis X M. rufogriseus) and her backcross offspring. Aus Mammal 18:79–82

    Google Scholar 

  • Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T, Almouzni G (2002) Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat Genet 30:329–334

    PubMed  Google Scholar 

  • Malik HS, Henikoff S (2001) Adaptive evolution of Cid, a centromere-specific histone in Drosophila. Genetics 157:1203–1208

    Google Scholar 

  • Malik HS, Henikoff S (2002) Conflict begets complexity: the evolution of centromeres. Curr Opin Genet Dev 12:711–718

    PubMed  CAS  Google Scholar 

  • Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T (1989) A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol 109:1963–1973

    PubMed  CAS  Google Scholar 

  • Mellone BG, Allshire RC (2003) Stretching it: putting the CEN(P-A) in centromere. Curr Opin Genet Dev 13:191–198

    PubMed  CAS  Google Scholar 

  • Metcalfe CJ, Bulazel KV, Ferreri GC, Schroeder-Reiter E, Wanner G, Rens W, Obergfell C, Eldridge MD, O’Neill RJ (2007) Genomic instability within centromeres of interspecific marsupial hybrids. Genetics 177:2507–2517

    PubMed  CAS  Google Scholar 

  • Miyahara M, Sumiyoshi H, Yamamoto M, Endo H (1985) Strand specific transcription of satellite DNA I in rat ascites hepatoma cells. Biochem Biophys Res Commun 130:897–903

    PubMed  CAS  Google Scholar 

  • Nagaki K, Song J, Stupar RM, Parokonny AS, Yuan Q, Ouyang S, Liu J, Hsiao J, Jones KM, Dawe RK, Buell CR, Jiang J (2003) Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics 163:759–770

    PubMed  CAS  Google Scholar 

  • Nagaki K, Cheng Z, Ouyang S, Talbert PB, Kim M, Jones KM, Henikoff S, Buell CR, Jiang J (2004) Sequencing of a rice centromere uncovers active genes. Nat Genet 36:138–145

    PubMed  CAS  Google Scholar 

  • Nagaki K, Neumann P, Zhang D, Ouyang S, Buell CR, Cheng Z, Jiang J (2005) Structure, divergence, and distribution of the CRR centromeric retrotransposon family in rice. Mol Biol Evol 22:845–855

    PubMed  CAS  Google Scholar 

  • Nakagawa H, Lee JK, Hurwitz J, Allshire RC, Nakayama J, Grewal SI, Tanaka K, Murakami Y (2002) Fission yeast CENP-B homologs nucleate centromeric heterochromatin by promoting heterochromatin-specific histone tail modifications. Genes Dev 16:1766–1778

    PubMed  CAS  Google Scholar 

  • Nakayama J, Rice JC, Strahl BD, Allis CD, Grewal SI (2001) Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292:110–113

    PubMed  CAS  Google Scholar 

  • Neumann P, Yan H, Jiang J (2007) The centromeric retrotransposons of rice are transcribed and differentially processed by RNA interference. Genetics 176:749–761

    PubMed  CAS  Google Scholar 

  • O’Neill RJ, O’Neill MJ, Graves JA (1998) Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid [see comments]. Nature 393:68–72

    PubMed  Google Scholar 

  • O’Neill RJ, Eldridge MD, Graves JA (2001) Chromosome heterozygosity and de novo chromosome rearrangements in interspecific mammalian hybrids. Mammalian Genome 12:256–259

    PubMed  Google Scholar 

  • O’Neill RJ, Eldridge MD, Metcalfe CJ (2004) Centromere dynamics and chromosome evolution in marsupials. J Hered 95:375–381

    PubMed  Google Scholar 

  • Ohzeki J, Nakano M, Okada T, Masumoto H (2002) CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA. J Cell Biol 159:765–775

    PubMed  CAS  Google Scholar 

  • Partridge JF, Borgstrom B, Allshire RC (2000) Distinct protein interaction domains and protein spreading in a complex centromere. Genes Dev 14:783–791

    PubMed  CAS  Google Scholar 

  • Peters AH, O’Carroll D, Scherthan H, Mechtler K, Sauer S, Schöfer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M, Jenuwein T (2001) Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–337

    PubMed  CAS  Google Scholar 

  • Pidoux AL, Allshire RC (2004) Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Res 12:521–534

    PubMed  CAS  Google Scholar 

  • Renault S, Rouleux-Bonnin F, Periquet G, Bigot Y (1999) Satellite DNA transcription in Diadromus pulchellus (Hymenoptera). Insect Biochem Mol Biol 29:103–111

    CAS  Google Scholar 

  • Renfree MB (2006) Society for Reproductive Biology Founders’ Lecture 2006 – life in the pouch: womb with a view. Reprod Fertil Dev 18:721–734

    PubMed  Google Scholar 

  • Rens W, O’Brien PC, Yang F, Graves JA, Ferguson-Smith MA (1999) Karyotype relationships between four distantly related marsupials revealed by reciprocal chromosome painting. Chromosome Res 7:461–474

    PubMed  CAS  Google Scholar 

  • Rens W, O’Brien PC, Fairclough H, Harman L, Graves JA, Ferguson-Smith MA (2003) Reversal and convergence in marsupial chromosome evolution. Cytogenet Genome Res 102:282–290

    PubMed  CAS  Google Scholar 

  • Rhoades MM, Dempsey E (1966) The effect of abnormal chromosome 10 on preferential segregation and crossing over in maize. Genetics 53:989–1026

    PubMed  CAS  Google Scholar 

  • Rice JC, Briggs SD, Ueberheide B, Barber CM, Shabanowitz J, Hunt DF, Shinkai Y, Allis CD (2003) Histone methyltransferases direct different degrees of methylation to define distinct chromatin domains. Mol Cell 12:1591–1598

    PubMed  CAS  Google Scholar 

  • Rofe RH (1979) G-banding and chromosomal evolution in Australian Marsupials. University of Adelaide, Adelaide

    Google Scholar 

  • Rouleux-Bonnin F, Renault S, Bigot Y, Periquet G (1996) Transcription of four satellite DNA subfamilies in Diprion pini (Hymenoptera, Symphyta, Diprionidae). Eur J Biochem 238:752–759

    PubMed  CAS  Google Scholar 

  • Rudert F, Bronner S, Garnier JM, Dollé P (1995) Transcripts from opposite strands of gamma satellite DNA are differentially expressed during mouse development. Mamm Genome 6:76–83

    PubMed  CAS  Google Scholar 

  • Sharman GB, Close RL, Maynes GM (1990) Chromosomal evolution, phylogeny and speciation of rock wallabies (Petrogale: Macropodidae). Aust J Zool 37:351–363

    Google Scholar 

  • Singer MF (1982) Highly repeated sequences in mammalian genomes. Int Rev Cytol 76:67–112

    PubMed  CAS  Google Scholar 

  • Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083

    PubMed  CAS  Google Scholar 

  • Sullivan BA, Willard HF (1998) Stable dicentric X chromosomes with two functional centromeres. Nat Genet 20:227–228

    PubMed  CAS  Google Scholar 

  • Sullivan KF, Hechenberger M, Masri K (1994) Human CENP-A contains a histone H3 related histone fold domain that is required for targeting to the centromere. J Cell Biol 127:581–592

    PubMed  CAS  Google Scholar 

  • Svartman M, Vianna-Morgante AM (1999) Comparative genome analysis in American marsupials: chromosome banding and in-situ hybridization. Chromosome Res 7:267–275

    PubMed  CAS  Google Scholar 

  • Talbert PB, Masuelli R, Tyagi AP, Comai L, Henikoff S (2002) Centromeric localization and adaptive evolution of an Arabadopsis histone H3 variant. Plant Cell 14:1053–1066

    PubMed  CAS  Google Scholar 

  • Topp CN, Zhong CX, Dawe RK (2004) Centromere-encoded RNAs are integral components of the maize kinetochore. Proc Natl Acad Sci USA 101:15986–15991

    PubMed  CAS  Google Scholar 

  • Ugarkovic D (2005) Functional elements residing within satellite DNAs. EMBO Rep 6:1035–1039

    PubMed  CAS  Google Scholar 

  • Valgardsdottir R, Chiodi I, Giordano M, Cobianchi F, Riva S, Biamonti G (2005) Structural and functional characterization of noncoding repetitive RNAs transcribed in stressed human cells. Mol Biol Cell 16:2597–2604

    PubMed  CAS  Google Scholar 

  • Ventura M, Mudge JM, Palumbo V, Burn S, Blennow E, Pierluigi M, Giorda R, Zuffardi O, Archidiacono N, Jackson MS, Rocchi M (2003) Neocentromeres in 15q24-26 map to duplicons which flanked an ancestral centromere in 15q25. Genome Res 13(9):2059–2068

    PubMed  CAS  Google Scholar 

  • Ventura M, Weigl S, Carbone L, Cardone MF, Misceo D, Teti M, D’Addabbo P, Wandall A, Björck E, de Jong PJ, She X, Eichler EE, Archidiacono N, Rocchi M (2004) Recurrent sites for new centromere seeding. Genome Res 14:1696–1703

    PubMed  CAS  Google Scholar 

  • Volpe TA, Kidner C, Hall IM, Teng G, Grewal SI, Martienssen RA (2002) Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297:1833–1837

    PubMed  CAS  Google Scholar 

  • Volpe TA, Schramke V, Hamilton GL, White SA, Teng G, Martienssen RA, Allshire RC (2003) RNA interference is required for normal centromere function in fission yeast. Chromosome Res 11:137–146

    PubMed  CAS  Google Scholar 

  • Wang WaHL (2000) Rapid and parallel chromosomal number reductions in muntjac deer inferred from mitochondrial DNA phylogeny. Mol Biol Evol 17:1326–1333

    PubMed  CAS  Google Scholar 

  • Warburton PE (2004) Chromosomal dynamics of human neocentromere formation. Chromosome Res 12:617–626

    PubMed  CAS  Google Scholar 

  • Warburton PE, Cooke CA, Bourassa S, Vafa O, Sullivan BA, Stetten G, Gimelli G, Warburton D, Tyler-Smith C, Sullivan KF, Poirier GG, Earnshaw WC (1997) Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol 7:901–904

    PubMed  CAS  Google Scholar 

  • White SA, Allshire RC (2004) Loss of Dicer fowls up centromeres. Nat Cell Biol 6:696–697

    PubMed  CAS  Google Scholar 

  • Willard HF (1990) Centromeres of mammalian chromosomes. Trends Genet 6(12):410–416

    PubMed  CAS  Google Scholar 

  • Williams BC, Murphy TD, Goldberg ML, Karpen GH (1998) Neocentromere activity of structurally acentric mini-chromosomes in Drosophila. Nat Genet 18:30–37

    PubMed  CAS  Google Scholar 

  • Wong LH, Choo KH (2004) Evolutionary dynamics of transposable elements at the centromere. Trends Genet 20:611–616

    PubMed  CAS  Google Scholar 

  • Wu ZG, Murphy C, Gall JG (1986) A transcribed satellite DNA from the bullfrog Rana catesbeiana. Chromosoma 93:291–297

    PubMed  CAS  Google Scholar 

  • Yoder JA, Walsh CP, Bestor TH (1997) Cytosine methylation and the ecology of intragenomic parasites. Trends Genet 13:335–340

    PubMed  CAS  Google Scholar 

  • Zhang Y, Huang Y, Zhang L, Li Y, Lu T, Lu Y, Feng Q, Zhao Q, Cheng Z, Xue Y, Wing RA, Han B (2004) Structural features of the rice chromosome 4 centromere. Nucl Acids Res 32:2023–2030

    PubMed  CAS  Google Scholar 

  • Zhong CX, Marshall JB, Topp C, Mroczek R, Kato A, Nagaki K, Birchler JA, Jiang J, Dawe RK (2002) Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell 14:2825–2836

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel J. O’Neill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Neill, R.J., Carone, D.M. (2009). The Role of ncRNA in Centromeres: A Lesson from Marsupials. In: Ugarkovic, D. (eds) Centromere. Progress in Molecular and Subcellular Biology, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00182-6_4

Download citation

Publish with us

Policies and ethics