Skip to main content

Subversion of the Cellular Autophagy Pathway by Viruses

  • Chapter
  • First Online:
Book cover Autophagy in Infection and Immunity

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 335))

Abstract

Autophagy is a cellular process that creates double-membraned vesicles, engulfs and degrades cytoplasmic material, and generates and recycles nutrients. A recognized participant in the innate immune response to microbial infection, a functional autophagic response can help to control the replication of many viruses. However, for several viruses, there is functional and mechanistic evidence that components of the autophagy pathway act as host factors in viral replicative cycles, viral dissemination, or both. Investigating the mechanisms by which viruses subvert or imitate autophagy, as well as the mechanisms by which they inhibit autophagy, will reveal cell biological tools and processes that will be useful for understanding the many functional ramifications of the double-membraned vesicle formation and cytosolic entrapment unique to the autophagy pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ait-Goughoulte M, Kanda T, Meyer K, Ryerse JS, Ray RB, Ray R (2008) Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol 82:2241–2249

    Article  CAS  PubMed  Google Scholar 

  • Al-Molawi N, Beardmore VA, Carter MJ, Kass GE, Roberts LO (2003) Caspase-mediated cleavage of the feline calicivirus capsid protein. J Gen Virol 84:1237–1244

    Article  CAS  PubMed  Google Scholar 

  • Alvarez M, Casadevall A (2006) Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr Biol 16:2161–2165

    Article  CAS  PubMed  Google Scholar 

  • Best SM (2008) Viral subversion of apoptotic enzymes: escape from death row. Annu Rev Microbiol 62:171–192

    Article  CAS  PubMed  Google Scholar 

  • Best SM, Shelton JF, Pompey JM, Wolfinbarger JB, Bloom ME (2003) Caspase cleavage of the nonstructural protein NS1 mediates replication of Aleutian mink disease parvovirus. J Virol 77:5305–5312

    Article  CAS  PubMed  Google Scholar 

  • Bienz K, Egger D, Rasser Y, Bossart W (1983) Intracellular distribution of poliovirus proteins and the induction of virus-specific cytoplasmic structures. Virology 131:39–48

    Article  CAS  PubMed  Google Scholar 

  • Brabec-Zaruba M, Berka U, Blaas D, Fuchs R (2007) Induction of autophagy does not affect human rhinovirus type 2 production. J Virol 81:10815–10817

    Article  CAS  PubMed  Google Scholar 

  • Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins requried for HIV infection through a functional genomic screen. Science 319:921–926

    Article  CAS  PubMed  Google Scholar 

  • Clem RJ, Fechheimer M, Miller LK (1991) Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 254:1388–1390

    Article  CAS  PubMed  Google Scholar 

  • Dales S, Eggers HJ, Tamm I, Palade GE. (1965) Electron microscopic study of the formation of poliovirus. Virology 26:379–389

    Article  CAS  PubMed  Google Scholar 

  • Dodd DA, Giddings TH, Jr., Kirkegaard K. (2001) Poliovirus 3A protein limits interleukin-6 (IL-6), IL-8, and beta interferon secretion during viral infection. J Virol 75:8158–8165

    Article  CAS  PubMed  Google Scholar 

  • Fass E, Shvets E, Degani I, Hirschberg K, Elazar Z (2006) Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. J Biol Chem 281:36303–36316

    Article  CAS  PubMed  Google Scholar 

  • Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G (2008) Viral control of mitochondrial apoptosis. PLoS Pathog 4:e1000018

    Article  PubMed  Google Scholar 

  • Hollinger FB, Ticehurst J (1990) Hepatitis A virus. In: Fields BN et al. (eds) Fields virology, 2nd edn. Raven, New York, pp 631–667

    Google Scholar 

  • Jackson WT, Giddings TH Jr, Taylor MP, Mulinyawe S, Rabinovitch M, Kopito RR, Kirkegaard K (2005) Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol 3:e156

    Google Scholar 

  • Jahreiss L, Menzies FM, Rubinsztein DC (2008) The itinerary of autophagosomes: from peripheral formation to kiss-and-run fusion with lysosomes. Traffic 9:574–587

    Article  CAS  PubMed  Google Scholar 

  • Kimura S, Noda T, Yoshimori T (2008) Dynein-dependent movement of autophagosomes mediates efficient encounters with lysosomes. Cell Struct Funct 33:109–122

    Article  CAS  PubMed  Google Scholar 

  • Kirkegaard K, Jackson WT (2005) Topology of double-membraned vesicles and the opportunity for non-lytic release of cytoplasm. Autophagy 1:182–184

    Article  PubMed  Google Scholar 

  • Koechl R, Hu XW, Chan EYW, Tooze S (2006) Microtubules faciliate autophagosome formation and fusion of autophagosomes with endosomes. Traffic 7:129–145

    Article  Google Scholar 

  • Kuznetsov SA, Gelfand VI (1987) 18 kDa microtubule-associated protein: identification as a new light chain (LC-3) of microtubule-associated protein 1 (MAP-1). FEBS Lett 212:145–148

    Article  CAS  PubMed  Google Scholar 

  • Lee YR, Lei HY, Liu MT, Wang JR, Chen SH, Jiang-Shieh YF, Lin YS, Yeh TM, Liu CC, Liu HS (2008) Autophagic machinery activated by dengue virus enhances virus replication. Virology 374:240–248

    Article  CAS  PubMed  Google Scholar 

  • Mendez E, Salas-Ocampo E, Arias CF (2004) Caspases mediate processing of the capsid precursor and cell release of human astroviruses. J Virol 78:8601–8608

    Article  CAS  PubMed  Google Scholar 

  • Miller DJ, Schwartz MD, Dye BT, Ahlquist P (2003) Engineered retargeting of viral RNA replication complexes to an alternative intracellular membrane. J Virol 77:12193–12202

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Ohsumi Y, Yoshimori T (2002) Autophagosome formation in mammalian cells. Cell Struct Funct 27:421–429

    Article  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075

    Article  CAS  PubMed  Google Scholar 

  • Ren PH, Lauckner JE, Kachirskaia I, Heusor JE, Melki R, Kopita RR (2009) Cytoplasmic penetration and persistent infection of mammalian cells by polyglutamine. Nat Cell Biol 11(2):219–225 (epub 2009)

    Google Scholar 

  • Roussarie JP, Ruffie C, Edgar JM, Griffiths I, Brahic M (2007) Axon myelin transfer of a non-enveloped virus. PLoS ONE 2:e1331

    Article  PubMed  Google Scholar 

  • Schlegel A, Giddings TH, Jr., Ladinsky MS, Kirkegaard K. (1996) Cellular origin and ultrastructure of membranes induced during poliovirus infection. J Virol 70:6576–6588

    CAS  PubMed  Google Scholar 

  • Sir D, Chen WL, Choi J, Wakita T, Yen TS, Ou JH. (2008) Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48:1054–1061

    Article  CAS  PubMed  Google Scholar 

  • Stinchcombe J, Bossi G, Griffiths GM. (2004) Linking albinism and immunity: the secrets of secretory lysosomes. Science 305:55–59

    Article  CAS  PubMed  Google Scholar 

  • Suhy DA, Giddings TH, Jr., Kirkegaard K (2000) Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol 74:8953–8965

    Article  CAS  PubMed  Google Scholar 

  • Taylor MP, Kirkegaard K (2007) Modification of cellular autophagy protein LC3 by poliovirus. J Virol 81:12543–12553

    Article  CAS  PubMed  Google Scholar 

  • Taylor MP, Burgon TB, Kirkegaard K, Jackson WT (2009) Role of microtubules in extracellular release of poliovirus. J Viral 83(13):6599–6609 (epub 2009)

    Google Scholar 

  • Wong J, Zhang J, Si X, Gao G, Mao I, McManus BM, Luo H (2008) Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 82:9143–9153

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Thackray L, Miller B, Lynn T, Becker M, Ward E, Mizushima N, Denison M, Virgin HT (2007) Coronavirus replication does not require the autophagy gene ATG5. Autophagy 3:581–585

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I would especially like to thank Thomas H. Giddings, Jr., whose electron micrographs allowed us to rediscover the double-membraned character of poliovirus-induced vesicles, and Andrew Staehelin, who first taught me about the autophagy pathway. I am grateful to the members of the laboratory who have worked on this topic over several years: Andreas Schlegel, David Suhy, William T. Jackson and Matthew Taylor. I thank Michel Brahic for stimulating discussions of non-lytic viral release and Arturo Casadevall for communicating results prior to publication. This work has been funded by the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla Kirkegaard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kirkegaard, K. (2009). Subversion of the Cellular Autophagy Pathway by Viruses. In: Levine, B., Yoshimori, T., Deretic, V. (eds) Autophagy in Infection and Immunity. Current Topics in Microbiology and Immunology, vol 335. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00302-8_16

Download citation

Publish with us

Policies and ethics