Skip to main content

Shigella Infection of Intestinal Epithelium and Circumvention of the Host Innate Defense System

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 337))

Abstract

Shigella, Gram-negative bacteria closely related to Escherichia coli, are highly adapted human pathogens that cause bacillary dysentery. Although Shigella have neither adherence factors nor flagella required for attaching or accessing the intestinal epithelium, Shigella are capable of colonizing the intestinal epithelium by exploiting epithelial-cell functions and circumventing the host innate immune response. During Shigella infection, they deliver many numbers of effectors through the type III secretion system into the surrounding space and directly into the host-cell cytoplasm. The effectors play pivotal roles from the onset of bacterial infection through to the establishment of the colonization of the intestinal epithelium, such as bacterial invasion, intracellular survival, subversion of the host immune defense response, and maintenance of the infectious foothold. These examples suggest that Shigella have evolved highly sophisticated infectious and intracellular strategies to establish replicative niches in the intestinal epithelium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adler B, Sasakawa C, Tobe T, Makino S, Komatsu K, Yoshikawa M (1989) A dual transcriptional activation system for the 230 kb plasmid genes coding for virulence-associated antigens of Shigella flexneri. Mol Microbiol 3:627–635

    CAS  PubMed  Google Scholar 

  • Alto NM, Shao F, Lazar CS, Brost RL, Chua G, Mattoo S, Mcmahon SA, Ghosh P, Hughes TR, Boone C, Dixon JE (2006) Identification of a bacterial type III effector family with G protein mimicry function. Cell 124:133–145

    CAS  PubMed  Google Scholar 

  • Amer AO, Swanson MS (2005) Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol 7:765–778

    CAS  PubMed  Google Scholar 

  • Amer A, Franchi L, Kanneganti TD, Body-Malapel M, Ozören N, Brady G, Meshinchi S, Jagirdar R, Gewirtz A, Akira S, Núñez G (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host IPAF. J Biol Chem 281:35217–35223

    CAS  PubMed  Google Scholar 

  • Arbibe L, Kim DW, Batsche E, Pedron T, Mateescu B, Muchardt C, Parsot C, Sansonetti PJ (2007) An injected bacterial effector targets chromatin access for transcription factor NF-κB to alter transcription of host genes involved in immune responses. Nat Immunol 8:47–56

    CAS  PubMed  Google Scholar 

  • Ashida H, Toyotome T, Nagai T, Sasakawa C (2007) Shigella chromosomal IpaH proteins are secreted via the type III secretion system and act as effectors. Mol Microbiol 63:680–693

    CAS  PubMed  Google Scholar 

  • Bélanger M, Rodrigues PH, Dunn WA Jr, Progulske-Fox A (2006) Autophagy: a highway for Porphyromonas gingivalis in endothelial cells. Autophagy 2:165–170

    PubMed  Google Scholar 

  • Bergsbaken T, Fink SL, Cookson BT (2009) Pyroptosis: host cell death and inflammation. Nat Rev Microbiol 7:99–109

    Google Scholar 

  • Bernardini ML, Mounier J, d’Hauteville H, Coquis-Rondon M, Sansonetti PJ (1989) Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc Natl Acad Sci USA 86:3867–3871

    CAS  PubMed  Google Scholar 

  • Blocker A, Gounon P, Larquet E, Niebuhr K, Cabiauz V, Parsot C, Sansonetti PJ (1999) The tripartite type III secretion of Shigella flexneri inserts IpaB and IpaC into host membrane. J Cell Biol 147:683–693

    CAS  PubMed  Google Scholar 

  • Bougnères L, Girardin SE, Weed SA, Karginov AV, Olivo-Marin JC, Parsons JT, Sansonetti PJ, Tran Van Nhieu G (2004) Cortactin and Crk cooperate to trigger actin polymerization during Shigella invasion of epithelial cells. J Cell Biol 166:225–235

    PubMed  Google Scholar 

  • Bourdet-Sicard R, Rüdiger M, Jockusch BM, gounon P, Sansonetti PJ, Tran Van Nhieu G (1999) Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J 18:5853–5862

    CAS  PubMed  Google Scholar 

  • Buchrieser C, Glaser P, Rusniok C, Nedjari H, d’Hauteville H, Kunst F, Sansonetti PJ, Parsot C (2000) The virulence plasmid pWR100 and the repertoire of proteins secreted by the type III secretion apparatus of Shigella flexneri. Mol Microbiol 38:760–771

    CAS  PubMed  Google Scholar 

  • Burton EA, Plattner R, Pendergast AM (2003) Abl tyrosine kinases are required for infection by Shigella flexneri. EMBO J 22:5471–5479

    CAS  PubMed  Google Scholar 

  • Carneiro LA, Travassos LH, Soares F, Tattoli I, Magalhaes JG, Bozza MT, Plotkowski MC, Sansonetti PJ, Molkentin JD, Philpott DJ, Girardin SE (2009) Shigella induces mitochondrial dysfunction and cell death in nonmyeloid cells. Cell Host Microbe 5:123–136

    CAS  PubMed  Google Scholar 

  • Chen Y, Smith MR, Thirumalai K, Zychlinsky A (1996) A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J 15:3853–3860

    Google Scholar 

  • Cossart P, Sansonetti PJ (2004) Bacterial invasion: the paradigms of enteroinvasive pathogens. Science 303:242–248

    Google Scholar 

  • Dehio C, Prévost MC, Sansonetti PJ (1995) Invasion of epithelial cells by Shigella flexneri induces tyrosine phosphorylation of cortactin by a pp 60c-src-mediated signalling pathway. EMBO J 14:2471–2482

    CAS  PubMed  Google Scholar 

  • Demali KA, Jue AL, Burridge K (2006) IpaA targets beta1 integrins and rho to promote actin cytoskelton rearrangements necessary for Shigella entry. J Biol Chem 281:39534–39541

    CAS  PubMed  Google Scholar 

  • Demers B, Sansonetti PJ, Parsot C (1998) Induction of type III secretion in Shigella flexneri is associated with differential control of transcription of genes encoding secreted proteins. EMBO J 17:2894–2903

    CAS  PubMed  Google Scholar 

  • Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 18:527–549

    Google Scholar 

  • Dorman CJ, Porter ME (1998) The Shigella virulence gene regulatory cascade: a paradigm of bacterial gene control mechanism. Mol Microbiol 29:677–684

    CAS  PubMed  Google Scholar 

  • Duménil G, Olivo JC, Pellegrini S, Fellous M, Sansonetti PJ, Tran Van Nhieu G (1998) Interferon alpha inhibits a Src-mediated pathway necessary for Shigella-induced cytoskeletal rearrangements in epithelial cells. J Cell Biol 143:1003–1012

    PubMed  Google Scholar 

  • Duménil G, Sansonetti PJ, Tran Van Nheiu G (2000) Src tyrosine kinase activity down-regulates Rho-dependent responses during Shigella entry into epithelial cells and stress fiber formation. J Cell Sci 113:71–80

    PubMed  Google Scholar 

  • Egile C, Loisel TP, Laurent V, Li R, Pantaloni D, Sansonetti PJ, Carlier MF (1999) Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J Cell Biol 146:1319–1332

    Google Scholar 

  • Elliott SJ, Krejany EO, Mellies JL, Robins-Browne RM, Sasakawa C, Kaper JB (2001) EspG, a novel type III system-secreted protein from enteropathogenic Escherichia coli with similarities to VirA of Shigella flexneri. Infect Immun 69:4027–4033

    CAS  PubMed  Google Scholar 

  • Fink SL, Cookson BT (2005) Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 73:1907–1916

    CAS  PubMed  Google Scholar 

  • Franchi L, Amer A, Body-Malapel M, Kanneganti TD, Ozören N, Jagirdar R, Inohara N, Vandenabeele P, Bertin J, Coyle A, Grant EP, Núñez G (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7:576–582

    CAS  PubMed  Google Scholar 

  • Franchi L, Park JH, Shaw MH, Marina-Garcia N, Chen G, Kim YG, Núñez G (2008) Intracellular NOD-like receptors in innate immunity, infection and disease. Cell Microbiol 10:1–8

    CAS  PubMed  Google Scholar 

  • Franchi L, Eigenbrod T, Muñoz-Planillo R, Nuñez G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10:241–247

    CAS  PubMed  Google Scholar 

  • Fritz JH, Ferrero RL, Philipott DJ, Girardin SE (2006) Nod-like proteins in immunity, inflammation and disease. Nat Immunol 7:1250–1257

    CAS  PubMed  Google Scholar 

  • Galán JE (2007) Effector proteins of type III secretion systems. Cell 130:192

    Google Scholar 

  • Galán JE, Wolf-Watz H (2006) Protein delivery into eukaryotic cells by type III secretion machines. Nature 444:567–573

    PubMed  Google Scholar 

  • Ge Z, Schauer DB, Fox JG (2008) In vivo virulence properties of bacterial cytolethal-distending toxin. Cell Microbiol 10:1599–1607

    CAS  PubMed  Google Scholar 

  • Girardin SE, Tournebize R, Mavris M, Page AL, Li X, Stark GR, Bertin J, DiStefano PS, Yaniv M, Sansonetti PJ, Philpott DJ (2001) CARD4/Nod1 mediates NF-κB and JNK activation by invasive Shigella flexneri. EMBO Rep 2:736–742

    CAS  PubMed  Google Scholar 

  • Girardin SE, Boneca IG, Carneiro LA, Antignac A, Jéhanno M, Viala J, Tedin K, Taha MK, Labigne A, Zähringer U, Coyle AJ, DiStefano PS, Bertin J, Sansonetti PJ, Philpott DJ (2003) Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 300:1584–1587

    CAS  PubMed  Google Scholar 

  • Goldberg MB, Barzu O, Parsot C, Sansonetti PJ (1993) Unipolar localization and ATPase activity of IcsA, a Shigella flexneri protein involved in intracellular movement. J Bacteriol 175:2189–2196

    CAS  PubMed  Google Scholar 

  • Gouin E, Welch MD, Cossart P (2005) Actin-based motility of intracellular pathogens. Curr Opin Microbiol 8:35–45

    CAS  PubMed  Google Scholar 

  • Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119:753–766

    CAS  PubMed  Google Scholar 

  • Gutierrez MG, Vázquez CL, Munafó DB, Zoppino FC, Berón W, Rabinovitch M, Colombo MI (2005) Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol 7:981–993

    CAS  PubMed  Google Scholar 

  • Hamiaux C, van Eerde A, Parsot C, Broos J, Dijkstra BW (2006) Structural mimicry for vinculin activation by IpaA, a virulence factor of Shigella flexneri. EMBO Rep 7:794–799

    CAS  PubMed  Google Scholar 

  • Handa Y, Suzuki M, Ohya K, Iwai H, Ishijima N, Koleske AJ, Fukui Y, Sasakawa C (2007) Shigella IpgB1 promotes bacterial entry through the ELMO-Dock180 machinery. Nat Cell Biol 9:121–128

    CAS  PubMed  Google Scholar 

  • Haraga A, Miller SI (2003) A Salmonella enterica serovar typhimurium translocated leucine-rich repeat effector protein inhibits NF-kappa B-dependent gene expression. Infect Immun 71:4052–4058

    CAS  PubMed  Google Scholar 

  • High N, Mounier J, Prévost MC, Sansonetti PJ (1992) IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. EMBO J 11:1991–1999

    CAS  PubMed  Google Scholar 

  • Hilbi H, Moss JE, Hersh D, Chen Y, Arnold J, Banerjee S, Flavell RA, Yuan J, Sansonetti PJ, Zychlinsky A (1998) Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 273:32895–32900

    CAS  PubMed  Google Scholar 

  • Inohara N, Núñez G (2003) NODs: intracellular proteins involved in inflammation and apoptosis. Nat Rev Immunol 3:371–382

    CAS  PubMed  Google Scholar 

  • Iwai H, Kim M, Yoshikawa Y, Ashida H, Ogawa M, Fujita Y, Muller D, Kirikae T, Jackson PK, Kotani S, Sasakawa C (2007) A bacterial effector targets Mad2L2, an APC inhibitor, to modulate host cell cycling. Cell 130:611–623

    CAS  PubMed  Google Scholar 

  • Izard T, Tran Van Nhieu G, Bois PR (2006) Shigella applies molecular mimicry to subvert vinculin and invade host cells. J Cell Biol 175:465–475

    CAS  PubMed  Google Scholar 

  • Jennison AV, Verma NK (2004) Shigella flexneri infection: pathogenesis and vaccine development. FEMS Microbiol Rev 28:43–58

    CAS  PubMed  Google Scholar 

  • Kane CD, Schuch R, Day WA, Maurelli AT (2002) MxiE regulates intracellular expression of factors secreted by the Shigella flexneri 2a type III secretion system. J Bacteriol 184:4409–4419

    CAS  PubMed  Google Scholar 

  • Kim DW, Lenzen G, Page AL, Legrain P, Sansonetti PJ, Parsot C (2005) The Shigella flexneri effector OspG interferes with innate immune responses by targeting ubiquitin-conjugating enzymes. Proc Natl Acad Sci USA 102:14046–14051

    CAS  PubMed  Google Scholar 

  • Kim M, Ogawa M, Fujita Y, Yoshikawa Y, Nagai T, Koyama T, Nagai S, Lange A, Fässler R, Sasakawa C (2009) Bacteria hijack integrin-linked kinase to stabilize focal adhesions and block cell detachment. Nature 459:578–582

    CAS  PubMed  Google Scholar 

  • Kirkegaard K, Taylor MP, Jackson WT (2004) Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol 2:301–314

    CAS  PubMed  Google Scholar 

  • Kotloff KL, Winickoff JP, Ivanoff B, Clemens JD, Swerdlow DL, Sansonetti PJ, Adak GK, Levine MM (1999) Global burden of Shigella infections: implications for vaccine development and implementation of control strategies. Bull World Health Organ 77:651–666

    CAS  PubMed  Google Scholar 

  • Kramer RW, Slagowski NL, Eze NA, Giddings KS, Morrison MF, Siggers KA, Stambach MN, Lesser CF (2007) Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation. PLos Pathogens 3:1–12

    Google Scholar 

  • Kufer TA, Kremmer E, Adam AC, Philpott DJ, Sansonetti PJ (2007) The pattern-recognition molecule Nod1 is localized at the plasma membrane at sites of bacterial interaction. Cell Microbiol 10:477–486

    PubMed  Google Scholar 

  • Lafont F, Tran Van Nhieu G, Hanada K, Sansonetti PJ, Goot FG (2002) Initial steps of Shigella infection dependent on the cholosterol/sphingolipid raft-mediated CD44-IpaB interaction. EMBO J 21:4449–4457

    CAS  PubMed  Google Scholar 

  • Lara-Tejero M, Galán JE (2000) A bacterial toxin that controls cell cycle progression as a deoxyribonuclease I-like protein. Science 290:354–357

    CAS  PubMed  Google Scholar 

  • Le Gall, Mavris M, Martino MC, Bernardini ML, Denamur E, Parsot C (2005) Analysis of virulence plasmid gene expression defines three classes of effectors in the type III secretion system of Shigella flexneri. Microbiology 151:951–962

    Google Scholar 

  • Lehrer RI, Ganz T (2002) Defensins of vertebrate animals. Curr Opin Immunol 14:96–102

    CAS  PubMed  Google Scholar 

  • Lett MC, Sasakawa C, Okada N, Sakai T, Makino S, Yamada M, Komatsu K, Yoshikawa M (1989) virG, a plasmid-coded virulence gene of Shigella flexneri: identification of the virG protein and determination of the complete coding sequence. J Bacteriol 171:353–359

    CAS  PubMed  Google Scholar 

  • Leung Y, Ally S, Goldberg MB (2008) Bacterial actin assembly requires Toca-1 to relieve N-WASP autoinhibition. Cell Host Microbe 3:39–47

    CAS  PubMed  Google Scholar 

  • Levine B, Deretic V (2007) Unveiling the roles of autophagy in innate and adaptive immunity. Nat Rev Immunol 7:767–777

    CAS  PubMed  Google Scholar 

  • Li H, Xu H, Zhou Y, Zhang J, Long C, Li S, Chen S, Zhou JM, Shao F (2007) The phosphothreonine lyase activity of a bacterial type III effector family. Science 315:1000–1003

    CAS  PubMed  Google Scholar 

  • Makino S, Sasakawa C, Kamata K, Kurata T, Yoshikawa M (1986) A genetic determinant required for continuous reinfection of adjacent cells on large plasmid in S. flexneri 2a. Cell 46:551–555

    CAS  PubMed  Google Scholar 

  • Marchès O, Ledger TN, Boury M, Ohara M, Tu X, Goffaux F, Mainil J, Rosenshine I, Sugai M, De Rycke J, Oswald E (2003) Enteropathogenic and enterohamorrhagic Escherichia coli deliver a novel effector called Cif which blocks cell cycle G2/M transition. Mol Microbiol 50:1553–1567

    PubMed  Google Scholar 

  • Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218

    CAS  PubMed  Google Scholar 

  • Mattoo S, Lee YM, Dixon JE (2007) Interactions of bacterial effector proteins with host proteins. Curr Opin Immunol 19:392–401

    CAS  PubMed  Google Scholar 

  • Matuzawa T, Kuwae A, Yoshida S, Sasakawa C, Abe A (2004) Enteropahogenic Escherichia coli activates the RhoA signaling pathway via the stimulation of GEF-H1. EMBO J 23:3570–3582

    Google Scholar 

  • Mavris M, Page AL, Tournebize R, Demers B, Sansonetti PJ, Parsot C (2002a) Regulation of transcription by the activity of the Shigella flexneri type III secretion apparatus. Mol Microbiol 43:1543–1553

    CAS  PubMed  Google Scholar 

  • Mavris M, Sansonetti PJ, Parsot C (2002b) Identification of the cis-acting site involved in activation of promoters regulated by activity of the type III secretion apparatus in Shigella flexneri. J. Bacteriol 184:6751–6759

    CAS  PubMed  Google Scholar 

  • Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7:569–575

    CAS  PubMed  Google Scholar 

  • Mimuro H, Suzuki T, Suetsugu S, Miki H, Takenawa T, Sasakawa C (2000) Profilin is required for sustaining efficient intra- and intercellular spreading of Shigella flexneri. J Biol Chem 275:28893-28901

    Google Scholar 

  • Miura M, Terajima J, Izumiya H, Mitobe J, Komano T, Watanabe H (2006) OspE2 of Shigella sonnei is required for the maintenance of cell architecture of bacterium-infected cells. Infect Immun 74:2587–2595

    CAS  PubMed  Google Scholar 

  • Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    CAS  PubMed  Google Scholar 

  • Mounier J, Vasselon T, Hellio R, Lesourd M, Sansonetti PJ (1992) Shigella flexneri enters human colonic Caco-2 epithelial cells through the basolateral pole. Infect Immun 60:237–248

    CAS  PubMed  Google Scholar 

  • Mounier J, Popoff MR, Enninga J, Frame MC, Sansonetti PJ, Tran Van Nhieu G (2009) The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog 5:e1000271

    PubMed  Google Scholar 

  • Nakagawa I, Amano A, Mizushima N, Yamamoto A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, Hamada S, Yoshimori T (2004) Autophagy defends cells against invading group A Streptococcus. Science 306:1037–1040

    CAS  PubMed  Google Scholar 

  • Niebuhr K, Giuriato S, Pedron T, Philpott DJ, Gaits F, Sable J, Sheetz MP, Parsot C, Sansonetti PJ, Payrastre B (2002) Conversion of PtdIns(4, 5) P(2) into PtdIns(5) P by the S. flexneri effector IpgD recognizes host cell morphology. EMBO J 21:5069–5078

    CAS  PubMed  Google Scholar 

  • Nougayrède JP, Taieb F, De Rycke J, Oswald E (2005) Cyclomodulins: bacterial effectors that modulate the eukaryotic cell cycle. Trends Microbiol 13:103–110

    PubMed  Google Scholar 

  • Ogawa M, Sasakawa C (2005) Intracellular survival of Shigella. Cell Microbiol 8:177–184

    Google Scholar 

  • Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C (2005) Escape of intracellular Shigella from autophagy. Science 307:727–731

    CAS  PubMed  Google Scholar 

  • Ogawa M, Handa Y, Ashida H, Suzuki M, Sasakawa C (2008) The versatility of Shigella effectors. Nat Rev Microbiol 6:11–16

    CAS  PubMed  Google Scholar 

  • Ohya K, Handa Y, Ogawa M, Suzuki M, Sasakawa C (2005) IpgB1 is a novel Shigella effector protein involved in bacterial invasion of host cells: its activity to promote membrane ruffling via Rac1 and Cdc42 activation. J Biol Chem 280:24022–24034

    CAS  PubMed  Google Scholar 

  • Okukda J, Toyotome T, Kataoka N, Ohno M, Abe H, Shimura Y, Seyedarabi A, Pichersgill R, Sasakawa C (2005) Shigella effector IpaH9.8 binds to a splicing factor U2AF35 to modulae host immuno responses. Biochem Biophys Res Commun 333:531–539

    Google Scholar 

  • Oswald E, Nougayrède JP, Taieb F, Sugai M (2005) Bacterial toxins that modulate host cell-cycle progression. Curr Opin Microbiol 8:83–91

    CAS  PubMed  Google Scholar 

  • Page AL, Ohayon H, Sansonetti PJ, Parsot C (1999) The secreted IpaB and IpaC invasins and their cytoplasmic chaperone IpgC are required for intercellular dissemination of Shigella flexneri. Cell Microbiol 1:183–193

    Google Scholar 

  • Pédron T, Thibault C, Sansonetti PJ (2003) The invasive phenotype pf Shigella flexneri directs a distinct gene expression pattern in the human intestinal epithelial cell line Caco-2. J Biol Chem 278:33878–33886

    PubMed  Google Scholar 

  • Pendaries C, Tronchère H, Arbibe L, Mounier J, Gozani O, Cantley L, Fry MJ, Gaits-Iacovoni F, Sansonetti PJ, Payrastre B (2006) PtdIns(5) P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J 25:1024–1034

    CAS  PubMed  Google Scholar 

  • Perdomo OJ, Cavaillon JM, Huerre M, Ohayon H, Gounon P, Sansonetti PJ (1994) Acute inflammation causes epithelial invasion and mucosal destruction in experimental shigellosis. J Exp Med 180:1307–1319

    CAS  PubMed  Google Scholar 

  • Phalipon A, Sansonetti PJ (2007) Shigella’s way of manipulating host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol 85:119–129

    CAS  PubMed  Google Scholar 

  • Phalipon A, Kaufmann M, Michetti P, Cavaillon JM, Huerre M, Sansonetti PJ, Kraehenbuhl P (1995) Monoclonal immunoglobulin A antibody directed against serotype-specific epitope of Shigella flexneri lipopolysaccharide protects against murine experimental shigellosis. J Exp Med 182:769–778

    CAS  PubMed  Google Scholar 

  • Rikihisa Y (1984) Glycogen autophagosomes in polymorphonuclear leukocytes induced by rickettsiae. Anat Rec 208:319–327

    CAS  PubMed  Google Scholar 

  • Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C (2007) Type III secretion effectors of the IpaH family are E3 ubiquitin ligase. Cell Host Microbe 1:77–83

    CAS  PubMed  Google Scholar 

  • Sakai T, Sasakawa C, Yoshikawa M (1988) Expression of four virulence antigens of Shigella flexneri is positively regulated at the transcriptional level by the 30 kiloDalton virF protein. Mol Microbiol 2:589–597

    CAS  PubMed  Google Scholar 

  • Samba-Louaka A, Nougayrède JP, Watrin C, Jubelin G, Oswald E, Taieb F (2008) Bacterial cyclomodulin Cif blocks the host cell cycle by stabilizing the cyclin-dependent kinase inhibitors p21 and p27. Cell Microbiol 10:2496–2508

    CAS  PubMed  Google Scholar 

  • Sansonetti PJ (2004) War and peace at mucosal surfaces. Nat Rev Immunol 4:953–964

    CAS  PubMed  Google Scholar 

  • Sansonetti PJ, Di Santo JP (2007) Debugging how bacteria manipulate the immune response. Immunity 26:149–161

    CAS  PubMed  Google Scholar 

  • Sansonetti PJ, Mounier J, Prevost MC, Mega RM (1994) Cadherin expression is required for the spread of Shigella flexneri between epithelial cells. Cell 76:829–839

    CAS  PubMed  Google Scholar 

  • Selsted ME, Ouellette AJ (2005) Mammalian defensins in the antimicrobial immune response. Nat Immunol 6:551–557

    CAS  PubMed  Google Scholar 

  • Serény B (1957) Experimental keratoconjunctivitis shigellosis. Acta Microbiol Acad Sci Hung 4:367–376

    PubMed  Google Scholar 

  • Shim DH, Suzuki T, Chan SY, Park SM, Sansonetti PJ, Sasakawa C, Kweo MN (2007) New animal model of shigellosis in the Guinea pig: its usefulness for protective efficacy studies. J Immunol 178:2476–2482

    CAS  PubMed  Google Scholar 

  • Singer AU, Rohde JR, Lam R, Skarina T, Kagan O, DiLeo R, Chirgadze NY, Cuff ME, Joachimiak A, Tyers M, Sansonetti PJ, Parsot C, Savchenko A (2008) Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat Struct Mol Biol 15:1293–1301

    CAS  PubMed  Google Scholar 

  • Skoudy A, Mounier J, Aruffo A, Ohayon H, Gounon P, Sansonetti PJ, Tran Van Nhieu G (2000) CD44 binds to the Shigella IpaB protein and participates in bacterial invasion of epithelial cells. Cell Microbiol 2:19–33

    CAS  PubMed  Google Scholar 

  • Sperandio B, Regnault B, Guo J, Zhang Z, Stanley SL Jr, Sansonetti PJ, Pédron T (2008) Virulent Shigella flaxneri subverts the host innate immune response through manipulation of antimicrobial peptide gene expression. J Exp Med 205:1121–1132

    CAS  PubMed  Google Scholar 

  • Stevens CE, Leblond CP (1953) Renewal of the mucous cells in the gastric mucosa of the rat. Anat Rec 115:231–245

    CAS  PubMed  Google Scholar 

  • Stevens JM, Galyov EE, Stevens MP (2006) Actin-dependent movement of bacterial pathogens. Nat Rev Microbiol 4:91–101

    CAS  PubMed  Google Scholar 

  • Stieglitz H, Lipsky P (1993) Association between reactive arthritis and antecedent infection with Shigella flexneri carrying a 2-Md plasmid and encoding an HLA-B27 mimetic epitope. Arthritis Rheum 36:1387–1391

    CAS  PubMed  Google Scholar 

  • Stieglitz H, Fosmire S, Lipsky P (1988) Bacterial epitopes involved in the induction of reactive arthritis. Am J Med 85:56–58

    CAS  PubMed  Google Scholar 

  • Suzuki T, Sasakawa C (2001) Molecular basis of the intracellular spreading of Shigella. Infect Immun 69:5959–5966

    CAS  PubMed  Google Scholar 

  • Suzuki T, Murai T, Fukuda I, Tobe T, Yoshikawa M, Sasakawa C (1994) Identification and characterization of a chromosomal virulence gene, vacJ, required for intercellular spreading of Shigella flexneri. Mol Microbiol 11:31–41

    CAS  PubMed  Google Scholar 

  • Suzuki T, Lett MC, Sasakawa C (1995) Extracellular transport of VirG protein in Shigella. J Biol Chem 270:30874–30880

    CAS  PubMed  Google Scholar 

  • Suzuki T, Saga S, Sasakawa C (1996) Functional analysis of Shigella VirG domains essential for interaction with vinculin and actin-based motility. J Biol Chem 271:21878–21885

    CAS  PubMed  Google Scholar 

  • Suzuki T, Miki H, Takenawa T, Sasakawa C (1998) Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J 17:2767–2776

    CAS  PubMed  Google Scholar 

  • Suzuki T, Mimuro H, Miki H, Takenawa T, Sasaki T, Nakanishi H, Takai Y, Sasakawa C (2000) Rho family GTPase Cdc42 is essential for the actin-based motility of Shigella in mammalian cells. J Exp Med 191:1905–1920

    CAS  PubMed  Google Scholar 

  • Suzuki T, Nakanishi K, Tsuysui H, Iwai H, Akira S, Inohara N, Chamaikkard M, Nuñez G, Sasakawa C (2005) A novel Caspase-1/Toll-like receptor 4-independent pathway of cell death induced by cytosolic Shigella in infected macrophages. J Biol Chem 280:14042–14050

    CAS  PubMed  Google Scholar 

  • Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Inohara N, Sasakawa C, Nuñez G (2007) Differential regulation of caspase-1 activation, pyroptosis and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLos Pathog 3:e111

    PubMed  Google Scholar 

  • Taieb F, Nougayrède JP, Watrin C, Samba-Louaka A, Oswald E (2006) Escherichia coli cyclomodulin Cif induces G2 arrest of the host cell cycle without activation of the DNA-damage checkpoint-signalling pathway. Cell Microbiol 8:1910–1921

    CAS  PubMed  Google Scholar 

  • Tattoli I, Carneiro LA, Jéhanno M, Magalhaes JG, Shu Y, Philpott DJ, Arnoult D, Girardin SE (2008) NLRX1 is a mitochondrial NOD-like receptor that amplifies NF-kappaB and JNK pathways by inducing reactive oxygen species production. EMBO Rep 9:293–300

    CAS  PubMed  Google Scholar 

  • Tobe T, Yoshikawa M, Mizuno T, Sasakawa C (1993) Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS. J Bacteriol 175:6142–6149

    CAS  PubMed  Google Scholar 

  • Tobe T, Beatson SA, Taniguchi H, Abe H, Bailey CM, Fivian A, Younis R, Matthewa S, Marches O, Frankel G, Hayashi T, Pallen MJ (2006) An extensive repertoire of type III secretion effectors in Escherichia coli O157 and the role of lambdoid phages in their dissemination. Proc Natl Acad Sci USA 103:14941–14946

    CAS  PubMed  Google Scholar 

  • Toyotome T, Suzuki T, Kuwae A, Nonaka T, Fukuda H, Imajoh-Ohmi S, Toyofuku T, Hori M, Sasakawa C (2001) Shigella protein IpaH9.8 is secreted from bacteria within mammalian cells and transported to the nucleus. J Biol Chem 276:32071–32079

    CAS  PubMed  Google Scholar 

  • Tran Van Nhieu G, Caron E, Hall A, Sansonetti PJ (1999) IpaC induces actin polymerization and filopodia formation during Shigella entry into epithelial cells. EMBO J 18:3249–3262

    CAS  PubMed  Google Scholar 

  • Tran Van Nhieu G, Clair C, Bruzzone R, Mesnil M, Sansonetti PJ, Combettes L (2003) Connexin-dependent inter-cellular communication increases invasion and dissemination of Shigella in epithelial cells. Nat Cell Biol 5:720–725

    PubMed  Google Scholar 

  • Tran Van Nhieu G, Enninga J, Sansonetti PJ, Grompone G (2005) Tyrosine kinase signaling and type III effectors orchestrating Shigella invasion. Curr Opin Microbiol 8:16–20

    Google Scholar 

  • Vasselon T, Mounier J, Hellio R, Sansonetti PJ (1992) Movement along actin filaments of the perijunctional area and denovo polymerization of cellular actin are required for Shigella flexneri colonization of epithelial Caco-2 cell monolayers. Infect Immun 60:1031–1040

    CAS  PubMed  Google Scholar 

  • Venkatesan MM, Buysse JM, Hartman AB (1991) Sequence variation in two ipaH genes of Shigella flexneri 5 and homology to the LRG-like family of proteins. Mol Microbiol 5:2435–2445

    CAS  PubMed  Google Scholar 

  • Venkatesan MM, Goldberg MB, Rose DJ, Grotbeck EJ, Burland V, Blattner FR (2001) Complete DNA sequence and analysis of the large virulence plasmid of Shigella flexneri. Infect Immun 69:3271–3285

    CAS  PubMed  Google Scholar 

  • Voino-Yasenetsky MV, Voino-Yasenetskaya MK (1961) Experimental pneumonia caused by bacteria of the Shigella group. Acta Morphol Acad Sci Hung 11:440–454

    Google Scholar 

  • Wassef JS, Keren DF, Mailloux JL (1989) Role of M cells in initial antigen uptake and in ulcer formation in the rabbit intestinal loop model of shigellosis. Infect Immun 57:858–863

    CAS  PubMed  Google Scholar 

  • Watarai M, Tobe T, Yoshikawa M, Sasakawa C (1995) Contact of Shigella with host cells triggers release of Ipa invasions and is essential function of invasiveness. EMBO J 14:2461–2470

    CAS  PubMed  Google Scholar 

  • Watarai M, Funato S, Sasakawa C (1996) Interaction of Ipa protein of Shigella flexneri with alpha5beta1 integrin promotes entry of the bacteria into mammalian cells. J Exp Med 183:991–999

    CAS  PubMed  Google Scholar 

  • Willingham SB, Bergstralh DT, O’Connor W, Morrison AC, Taxman DJ, Duncan JA, Barnoy S, Venkatesan MM, Flavell RA, Deshmukh M, Hoffman HM, Ting JP (2007) Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2:147–159

    CAS  PubMed  Google Scholar 

  • Yoshida S, Katayama E, Kuwae A, Mimuro H, Suzuki T, Sasakawa C (2002) Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J 21:2923–2935

    CAS  PubMed  Google Scholar 

  • Yoshida S, Handa Y, Suzuki T, Ogawa M, Suzuki M, Tamai A, Abe A, Katayama E, Sasakawa C (2006) Microtuble-severing activity of Shigella is pivotal for intercellular spreading. Science 314:985–989

    CAS  PubMed  Google Scholar 

  • Zasloff M (2002) Antimicrobial peptides of multicellular organisms. Nature 415:389–395

    CAS  PubMed  Google Scholar 

  • Zhu Y, Li H, Hu L, Wang J, Zhou Y, Pang Z, Liu L, Shao F (2008) Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat Struct Mol Biol 15:1302–1308

    CAS  PubMed  Google Scholar 

  • Zychlinsky A, Provost MC, Sansonetti PJ (1992) Shigella flexneri induces apoptosis in infected macrophages. Nature 358:167–169

    CAS  PubMed  Google Scholar 

  • Zychlinsky A, Fitting C, Cavaillon JM, Sansonetti PJ (1994) Interleukin 1 is released by murine macrophages during apoptosis induced by Shigella flexneri. J Clin Invest 94:1328–1332

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of the Sasakawa Laboratory for their helpful advice. This work was supported by Grand-in-Aid for Scientific Research (S) (20229006) and (B) (20390123); a Grant-in-Aid for Exploratory Research (20659067); a Grant-in-Aid for Scientific Research on Priority Areas (18073003); the Strategic Cooperation to Control Emerging and Reemerging Infections Funded by The Special Coordination Funds for Promoting Science and Technology; and a Contract Research Fund for the Program of Funding Research Centers for Emerging and Reemerging Infectious Diseases from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), and the Core Research for Evolutional Science and Technology (CREST) from the Japan Science and Technology Agency (JST). The authors have no conflicting financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chihiro Sasakawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ashida, H., Ogawa, M., Mimuro, H., Sasakawa, C. (2009). Shigella Infection of Intestinal Epithelium and Circumvention of the Host Innate Defense System. In: Sasakawa, C. (eds) Molecular Mechanisms of Bacterial Infection via the Gut. Current Topics in Microbiology and Immunology, vol 337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01846-6_8

Download citation

Publish with us

Policies and ethics