Skip to main content

Lotus Effect: Surfaces with Roughness-Induced Superhydrophobicity, Self-Cleaning, and Low Adhesion

  • Chapter
Springer Handbook of Nanotechnology

Part of the book series: Springer Handbooks ((SHB))

Abstract

Superhydrophobic surfaces exhibit extreme water-repellent properties. These surfaces with high contact angle and low contact angle hysteresis also exhibit a self-cleaning effect and low drag for fluid flow. These surfaces are of interest in various applications, including self-cleaning windows, exterior paints for buildings, navigation ships, textiles, solar panels, and applications requiring antifouling and a reduction in fluid flow, e.g., in micro/nanochannels. Superhydrophobic surfaces can also be used for energy conservation and energy conversion, such as in the development of a microscale capillary engine. Superhydrophobic surfaces prevent the formation of menisci at a contacting interface and can be used to minimize adhesion and stiction. Certain plant leaves, notably lotus leaves, are known to be superhydrophobic and self-cleaning due to hierarchical roughness and the presence of wax tubules on the leaf surface. This phenomenon is known as the lotus effect. Superhydrophobic and self-cleaning surfaces can be produced by using roughness combined with hydrophobic coatings. In this chapter, the theory of roughness-induced superhydrophobicity and self-cleaning is presented, followed by the characterization data of natural leaf surfaces. Micro-, nano-, and hierarchical patterned structures have been fabricated, and the wetting properties and adhesion have been characterized to validate models and provide design guidelines for superhydrophobic and self-cleaning surfaces. In addition, a model of contact angle for oleophilic/phobic surfaces is presented. The wetting behavior of fabricated surfaces is investigated. Fundamental physical mechanisms of wetting responsible for the transition between various wetting regimes, contact angle, and contact angle hysteresis are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

atomic force microscope

AFM:

atomic force microscopy

AKD:

alkylketene dimer

BCH:

brucite-type cobalt hydroxide

CAH:

contact angle hysteresis

CBD:

chemical bath deposition

CCD:

charge-coupled device

CNT:

carbon nanotube

CVD:

chemical vapor deposition

DI:

deionized

DI:

digital instrument

ESEM:

environmental scanning electron microscope

FAA:

formaldehyde–acetic acid–ethanol

GSED:

gaseous secondary-electron detector

HAR:

high aspect ratio

ITO:

indium tin oxide

LA:

lauric acid

LAR:

low aspect ratio

LBL:

layer-by-layer

MEMS:

microelectromechanical system

MWCNT:

multiwall carbon nanotube

NADIS:

nanoscale dispensing

NEMS:

nanoelectromechanical system

OTS:

octadecyltrichlorosilane

P–V:

peak-to-valley

PAA:

poly(acrylic acid)

PAA:

porous anodic alumina

PAH:

poly(allylamine hydrochloride)

PC:

polycarbonate

PDMS:

polydimethylsiloxane

PECVD:

plasma-enhanced chemical vapor deposition

PFDTES:

perfluorodecyltriethoxysilane

PFOS:

perfluorooctanesulfonate

PMMA:

poly(methyl methacrylate)

PPy:

polypyrrole

PS-PDMS:

poly(styrene-b-dimethylsiloxane)

PS:

polystyrene

PTFE:

polytetrafluoroethylene

PUA:

polyurethane acrylate

PVD:

physical vapor deposition

RH:

relative humidity

RMS:

root mean square

SAM:

scanning acoustic microscopy

SAM:

self-assembled monolayer

SEM:

scanning electron microscope

SEM:

scanning electron microscopy

TMS:

tetramethylsilane

TMS:

trimethylsilyl

UV:

ultraviolet

References

  1. A.V. Adamson: Physical Chemistry of Surfaces (Wiley, New York 1990)

    Google Scholar 

  2. J.N. Israelachvili: Intermolecular and Surface Forces, 2nd edn. (Academic, London 1992)

    Google Scholar 

  3. B. Bhushan: Principles and Applications of Tribology (Wiley, New York 1999)

    Google Scholar 

  4. B. Bhushan: Introduction to Tribology (Wiley, New York 2002)

    Google Scholar 

  5. M. Nosonovsky, B. Bhushan: Multiscale Dissipative Mechanisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimetics (Springer, Berlin, Heidelberg 2008)

    MATH  Google Scholar 

  6. C.W. Extrand: Model for contact angle and hysteresis on rough and ultraphobic surfaces, Langmuir 18, 7991–7999 (2002)

    Article  Google Scholar 

  7. J. Kijlstra, K. Reihs, A. Klami: Roughness and topology of ultra-hydrophobic surfaces, Colloids Surf. A 206, 521–529 (2002)

    Article  Google Scholar 

  8. B. Bhushan, Y.C. Jung: Wetting, adhesion and friction of superhydrophobic and hydrophilic leaves and fabricated micro-/nanopatterned surfaces, J. Phys. Condens. Matter 20, 225010 (2008)

    Article  Google Scholar 

  9. M. Nosonovsky, B. Bhushan: Multiscale friction mechanisms and hierarchical surfaces in nano- and bio-tribology, Mater. Sci. Eng. R 58, 162–193 (2007)

    Article  Google Scholar 

  10. M. Nosonovsky, B. Bhushan: Roughness-induced superhydrophobicity: A way to design nonadhesive surfaces, J. Phys. Condens. Matter 20, 225009 (2008)

    Article  Google Scholar 

  11. M. Nosonovsky, B. Bhushan: Biologically-inspired surfaces: Broadening the scope of roughness, Adv. Funct. Mater. 18, 843–855 (2008)

    Article  Google Scholar 

  12. B. Bhushan, Y.C. Jung, K. Koch: Self-cleaning efficiency of artificial superhydrophobic surfaces, Langmuir 25, 3240–3248 (2009)

    Article  Google Scholar 

  13. M. Nosonovsky, B. Bhushan: Superhydrophobicity for energy conversion and conservation applications, J. Adhes. Sci. Technol. 22, 2105–2115 (2008)

    Google Scholar 

  14. M. Nosonovsky, B. Bhushan: Multiscale effects and capillary interactions in functional biomimetic surfaces for energy conversion and green engineering, Philos. Trans. R. Soc. A 367, 1511–1539 (2009)

    Article  Google Scholar 

  15. M. Nosonovsky, B. Bhushan: Superhydrophobic surfaces and emerging applications: Nonadhesion, energy, green engineering, Curr. Opin. Colloid Interface Sci. 14(4), 270–280 (2009)

    Article  Google Scholar 

  16. B. Bhushan: Adhesion and stiction: Mechanisms, measurement techniques and methods for reduction, J. Vac. Sci. Technol. B 21, 2262–2296 (2003)

    Article  Google Scholar 

  17. B. Bhushan: Nanotribology and Nanomechanics – An Introduction, 2nd edn. (Springer, Berlin, Heidelberg 2008)

    Google Scholar 

  18. B. Bhushan, J.N. Israelachvili, U. Landman: Nanotribology: Friction, wear and lubrication at the atomic scale, Nature 374, 607–616 (1995)

    Article  Google Scholar 

  19. B. Bhushan: Tribology and Mechanics of Magnetic Storage Systems, 2nd edn. (Springer, New York 1996)

    Book  Google Scholar 

  20. B. Bhushan: Tribology Issues and Opportunities in MEMS (Kluwer, Dordrecht 1998)

    Book  Google Scholar 

  21. B. Bhushan: Modern Tribology Handbook (CRC, Boca Raton 2001)

    Google Scholar 

  22. C. Neinhuis, W. Barthlott: Characterization and distribution of water-repellent, self-cleaning plant surfaces, Ann. Bot. 79, 667–677 (1997)

    Article  Google Scholar 

  23. W. Barthlott, C. Neinhuis: Purity of the sacred Lotus, or escape from contamination in biological surfaces, Planta 202, 1–8 (1997)

    Article  Google Scholar 

  24. P. Wagner, R. Fürstner, W. Barthlott, C. Neinhuis: Quantitative assessment to the structural basis of water repellency in natural and technical surfaces, J. Exp. Bot. 54, 1295–1303 (2003)

    Article  Google Scholar 

  25. Z. Burton, B. Bhushan: Surface characterization and adhesion and friction properties of hydrophobic leaf surfaces, Ultramicroscopy 106, 709–719 (2006)

    Article  Google Scholar 

  26. B. Bhushan, Y.C. Jung: Micro- and nanoscale characterization of hydrophobic and hydrophilic leaf surface, Nanotechnology 17, 2758–2772 (2006)

    Article  Google Scholar 

  27. B. Bhushan: Biomimetics: Lessons from nature – An overview, Philos. Trans. R. Soc. A 367, 1445–1486 (2009)

    Article  Google Scholar 

  28. K. Koch, B. Bhushan, W. Barthlott: Diversity of structure, morphology, and wetting of plant surfaces, Soft Matter 4, 1943–1963 (2008), (invited)

    Article  Google Scholar 

  29. K. Koch, B. Bhushan, W. Barthlott: Multifunctional surface structures of plants: An inspiration for biomimetics, Prog. Mater. Sci. 54, 137–178 (2009), (invited)

    Article  Google Scholar 

  30. K. Koch, B. Bhushan, Y.C. Jung, W. Barthlott: Fabrication of artificial Lotus leaves and significance of hierarchical structure for superhydrophobicity and low adhesion, Soft Matter 5, 1386–1393 (2009)

    Article  Google Scholar 

  31. X.F. Gao, L. Jiang: Biophysics: Water-repellent legs of water striders, Nature 432, 36 (2004)

    Article  Google Scholar 

  32. X. Gao, X. Yan, X. Yao, L. Xu, K. Zhang, J. Zhang, B. Yang, L. Jiang: The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography, Adv. Mater. 19, 2213–2217 (2007)

    Article  Google Scholar 

  33. M. Liu, S. Wang, Z. Wei, Y. Song, L. Jiang: Bioinspired design of a superoleophobic and low adhesive water/solid interface, Adv. Mater. 21, 665–669 (2009)

    Article  Google Scholar 

  34. D.W. Bechert, M. Bruse, W. Hage: Experiments with three-dimensional riblets as an idealized model of shark skin, Exp. Fluids 28, 403–412 (2000)

    Article  Google Scholar 

  35. J. Genzer, K. Efimenko: Recent developments in superhydrophobic surfaces and their relevance to marine fouling: A review, Biofouling 22, 339–360 (2006)

    Article  Google Scholar 

  36. R.N. Wenzel: Resistance of solid surfaces to wetting by water, Ind. Eng. Chem. 28, 988–994 (1936)

    Article  Google Scholar 

  37. A. Cassie, S. Baxter: Wettability of porous surfaces, Trans. Faraday Soc. 40, 546–551 (1944)

    Article  Google Scholar 

  38. R.E. Johnson, R.H. Dettre: Contact angle hysteresis. In: Contact Angle, Wettability, and Adhesion, Adv. Chem. Ser., Vol. 43, ed. by F.M. Fowkes (American Chemical Society, Washington 1964) pp. 112–135

    Chapter  Google Scholar 

  39. J. Bico, U. Thiele, D. Quéré: Wetting of textured surfaces, Colloids Surf. A 206, 41–46 (2002)

    Article  Google Scholar 

  40. A. Marmur: Wetting on hydrophobic rough surfaces: To be heterogeneous or not to be?, Langmuir 19, 8343–8348 (2003)

    Article  Google Scholar 

  41. A. Marmur: The Lotus effect: Superhydrophobicity and metastability, Langmuir 20, 3517–3519 (2004)

    Article  Google Scholar 

  42. A. Lafuma, D. Quéré: Superhydrophobic states, Nat. Mater. 2, 457–460 (2003)

    Article  Google Scholar 

  43. N.A. Patankar: Transition between superhydrophobic states on rough surfaces, Langmuir 20, 7097–7102 (2004)

    Article  Google Scholar 

  44. B. He, N.A. Patankar, J. Lee: Multiple equilibrium droplet shapes and design criterion for rough hydrophobic surfaces, Langmuir 19, 4999–5003 (2003)

    Article  Google Scholar 

  45. S. Herminghaus: Roughness-induced nonwetting, Europhys. Lett. 52, 165–170 (2000)

    Article  Google Scholar 

  46. N.A. Patankar: Mimicking the Lotus effect: Influence of double roughness structures and slender pillars, Langmuir 20, 8209–8213 (2004)

    Article  Google Scholar 

  47. M. Sun, C. Luo, L. Xu, H. Ji, Q. Ouyang, D. Yu, Y. Chen: Artificial Lotus leaf by nanocasting, Langmuir 21, 8978–8981 (2005)

    Article  Google Scholar 

  48. S. Shibuichi, T. Onda, N. Satoh, K. Tsujii: Super-water-repellent surfaces resulting from fractal structure, J. Phys. Chem. 100, 19512–19517 (1996)

    Article  Google Scholar 

  49. M. Nosonovsky, B. Bhushan: Roughness optimization for biomimetic superhydrophobic surfaces, Microsyst. Technol. 11, 535–549 (2005)

    Article  Google Scholar 

  50. M. Nosonovsky, B. Bhushan: Stochastic model for metastable wetting of roughness-induced superhydrophobic surfaces, Microsyst. Technol. 12, 231–237 (2006)

    Article  Google Scholar 

  51. M. Nosonovsky, B. Bhushan: Wetting of rough three-dimensional superhydrophobic surfaces, Microsyst. Technol. 12, 273–281 (2006)

    Article  Google Scholar 

  52. B. Bhushan, Y.C. Jung: Wetting study of patterned surfaces for superhydrophobicity, Ultramicroscopy 107, 1033–1041 (2007)

    Article  Google Scholar 

  53. B. Bhushan, M. Nosonovsky, Y.C. Jung: Towards optimization of patterned superhydrophobic surfaces, J. R. Soc. Interface 4, 643–648 (2007)

    Article  Google Scholar 

  54. B. Bhushan, K. Koch, Y.C. Jung: Nanostructures for superhydrophobicity and low adhesion, Soft Matter 4, 1799–1804 (2008)

    Article  Google Scholar 

  55. B. Bhushan, K. Koch, Y.C. Jung: Biomimetic hierarchical structure for self-cleaning, Appl. Phys. Lett. 93, 093101 (2008)

    Article  Google Scholar 

  56. B. Bhushan, K. Koch, Y.C. Jung: Fabrication and characterization of the hierarchical structure for superhydrophobicity, Ultramicroscopy 109, 1029–1034 (2009)

    Article  Google Scholar 

  57. B. Bhushan, Y.C. Jung, A. Niemietz, K. Koch: Lotus-like biomimetic hierarchical structures developed by the self-assembly of tubular plant waxes, Langmuir 25, 1659–1666 (2009)

    Article  Google Scholar 

  58. B. Bhushan, Y.C. Jung, K. Koch: Micro-, nano- and hierarchical structures for superhydrophobicity, self-cleaning and low adhesion, Philos. Trans. R. Soc. A 367, 1631–1672 (2009)

    Article  Google Scholar 

  59. Y.C. Jung, B. Bhushan: Wetting transition of water droplets on superhydrophobic patterned surfaces, Scr. Mater. 57, 1057–1060 (2007)

    Article  Google Scholar 

  60. Y.C. Jung, B. Bhushan: Wetting behavior during evaporation and condensation of water microdroplets on superhydrophobic patterned surfaces, J. Microsc. 229, 127–140 (2008)

    Article  MathSciNet  Google Scholar 

  61. Y.C. Jung, B. Bhushan: Dynamic effects of bouncing water droplets on superhydrophobic surfaces, Langmuir 24, 6262–6269 (2008)

    Article  Google Scholar 

  62. Y.C. Jung, B. Bhushan: Dynamic effects induced transition of droplets on biomimetic superhydrophobic surfaces, Langmuir 25(16), 9208–9218 (2009)

    Article  Google Scholar 

  63. M. Nosonovsky, B. Bhushan: Hierarchical roughness makes superhydrophobic surfaces stable, Microelectron. Eng. 84, 382–386 (2007)

    Article  Google Scholar 

  64. M. Nosonovsky, B. Bhushan: Hierarchical roughness optimization for biomimetic superhydrophobic surfaces, Ultramicroscopy 107, 969–979 (2007)

    Article  Google Scholar 

  65. M. Nosonovsky, B. Bhushan: Patterned nonadhesive surfaces: Superhydrophobicity and wetting regime transitions, Langmuir 24, 1525–1533 (2008)

    Article  Google Scholar 

  66. M. Nosonovsky, B. Bhushan: Capillary effects and instabilities in nanocontacts, Ultramicroscopy 108, 1181–1185 (2008)

    Article  Google Scholar 

  67. M. Nosonovsky, B. Bhushan: Do hierarchical mechanisms of superhydrophobicity lead to self-organized criticality?, Scr. Mater. 59, 941–944 (2008)

    Article  Google Scholar 

  68. M. Nosonovsky, B. Bhushan: Energy transitions in superhydrophobicity: Low adhesion, easy flow and bouncing, J. Phys. Condens. Matter 20, 395005 (2008)

    Article  Google Scholar 

  69. C.W. Extrand: Criteria for ultralyophobic surfaces, Langmuir 20, 5013–5018 (2004)

    Article  Google Scholar 

  70. M. Nosonovsky, B. Bhushan: Biomimetic superhydrophobic surfaces: Multiscale approach, Nano Lett. 7, 2633–2637 (2007)

    Article  Google Scholar 

  71. J. Bico, C. Marzolin, D. Quéré: Pearl drops, Europhys. Lett. 47, 220–226 (1999)

    Article  Google Scholar 

  72. D. Oner, T.J. McCarthy: Ultrahydrophobic surfaces. Effects of topography length scales on wettability, Langmuir 16, 7777–7778 (2000)

    Article  Google Scholar 

  73. Z. Yoshimitsu, A. Nakajima, T. Watanabe, K. Hashimoto: Effects of surface structure on the hydrophobicity and sliding behavior of water droplets, Langmuir 18, 5818–5822 (2002)

    Article  Google Scholar 

  74. D. Richard, C. Clanet, D. Quéré: Contact time of a bouncing drop, Nature 417, 811 (2002)

    Article  Google Scholar 

  75. D. Bartolo, F. Bouamrirene, E. Verneuil, A. Buguin, P. Silberzan, S. Moulinet: Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces, Europhys. Lett. 74, 299–305 (2006)

    Article  Google Scholar 

  76. M. Reyssat, A. Pepin, F. Marty, Y. Chen, D. Quéré: Bouncing transitions on microtextured materials, Europhys. Lett. 74, 306–312 (2006)

    Article  Google Scholar 

  77. F.G. Yost, J.R. Michael, E.T. Eisenmann: Extensive wetting due to roughness, Acta Metall. Mater. 45, 299–305 (1995)

    Google Scholar 

  78. S. Semal, T.D. Blake, V. Geskin, M.L. de Ruijter, G. Castelein, J. De Coninck: Influence of surface roughness on wetting dynamics, Langmuir 15, 8765–8770 (1999)

    Article  Google Scholar 

  79. H.Y. Erbil, A.L. Demirel, Y. Avci: Transformation of a simple plastic into a superhydrophobic surface, Science 299, 1377–1380 (2003)

    Article  Google Scholar 

  80. Z. Burton, B. Bhushan: Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems, Nano Lett. 5, 1607–1613 (2005)

    Article  Google Scholar 

  81. Y.C. Jung, B. Bhushan: Contact angle, adhesion, and friction properties of micro- and nanopatterned polymers for superhydrophobicity, Nanotechnology 17, 4970–4980 (2006)

    Article  Google Scholar 

  82. C. Bourges-Monnier, M.E.R. Shanahan: Influence of evaporation on contact angle, Langmuir 11, 2820–2829 (1995)

    Article  Google Scholar 

  83. S.M. Rowan, M.I. Newton, G. McHale: Evaporation of microdroplets and the wetting of solid surfaces, J. Phys. Chem. 99, 13268–13271 (1995)

    Article  Google Scholar 

  84. H.Y. Erbil, G. McHale, M.I. Newton: Drop evaporation on solid surfaces: Constant contact angle mode, Langmuir 18, 2636–2641 (2002)

    Article  Google Scholar 

  85. G. McHale, S. Aqil, N.J. Shirtcliffe, M.I. Newton, H.Y. Erbil: Analysis of droplet evaporation on a superhydrophobic surface, Langmuir 21, 11053–11060 (2005)

    Article  Google Scholar 

  86. G.D. Danilatos, J.V. Brancik: Observation of liquid transport in the ESEM, Proc. 44th Annu. Meet. EMSA (1986) pp. 678–679

    Google Scholar 

  87. N.A. Stelmashenko, J.P. Craven, A.M. Donald, E.M. Terentjev, B.L. Thiel: Topographic contrast of partially wetting water droplets in environmental scanning electron microscopy, J. Microsc. 204, 172–183 (2001)

    Article  MathSciNet  Google Scholar 

  88. P.G. de Gennes, F. Brochard-Wyart, D. Quéré: Capillarity and Wetting Phenomena (Springer, Berlin, Heidelberg 2003)

    Google Scholar 

  89. J.N. Israelachvili, M.L. Gee: Contact angles on chemically heterogeneous surfaces, Langmuir 5, 288–289 (1989)

    Article  Google Scholar 

  90. O.N. Tretinnikov: Wettability and microstructure of polymer surfaces: Stereochemical and conformational aspects. In: Apparent and Microscopic Contact Angles, ed. by J. Drelich, J.S. Laskowski, K.L. Mittal (VSP, Utrecht 2000) pp. 111–128

    Google Scholar 

  91. W. Li, A. Amirfazli: A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces, J. Colloid Interface Sci. 292, 195–201 (2006)

    Article  Google Scholar 

  92. B.V. Derjaguin, N.V. Churaev: Structural component of disjoining pressure, J. Colloid Interface Sci. 49, 249–255 (1974)

    Article  Google Scholar 

  93. A. Checco, P. Guenoun, J. Daillant: Nonlinear dependence of the contact angle of nanodroplets on contact line curvatures, Phys. Rev. Lett. 91, 186101 (2003)

    Article  Google Scholar 

  94. M.A. Anisimov: Divergence of Tolmanʼs length for a droplet near the critical point, Phys. Rev. Lett. 98, 035702 (2007)

    Article  Google Scholar 

  95. T. Pompe, A. Fery, S. Herminghaus: Measurement of contact line tension by analysis of the three-phase boundary with nanometer resolution. In: Apparent and Microscopic Contact Angles, ed. by J. Drelich, J.S. Laskowski, K.L. Mittal (VSP, Utrecht 2000) pp. 3–12

    Google Scholar 

  96. L. Boruvka, A.W. Neumann: Generalization of the classical theory of capillarity, J. Chem. Phys. 66, 5464–5476 (1977)

    Article  Google Scholar 

  97. M. Nosonovsky: On the range of applicability of the Wenzel and Cassie equations, Langmuir 23, 9919–9920 (2007)

    Article  Google Scholar 

  98. L. Gao, T.J. McCarthy: How Wenzel and Cassie were wrong, Langmuir 23, 3762–3765 (2007)

    Article  Google Scholar 

  99. C.W. Extrand: Contact angle hysteresis on surfaces with chemically heterogeneous islands, Langmuir 19, 3793–3796 (2003)

    Article  Google Scholar 

  100. L. Barbieri, E. Wagner, P. Hoffmann: Water wetting transition parameters of perfluorinated substrates with periodically distributed flat-top microscale obstavles, Langmuir 23, 1723–1734 (2007)

    Article  Google Scholar 

  101. F.E. Bartell, J.W. Shepard: Surface roughness as related to hysteresis of contact angles, J. Phys. Chem. 57, 455–458 (1953)

    Article  Google Scholar 

  102. P. Gupta, A. Ulman, F. Fanfan, A. Korniakov, K. Loos: Mixed self-assembled monolayer of alkanethiolates on ultrasmooth gold do not exhibit contact angle hysteresis, J. Am. Chem. Soc. 127, 4–5 (2005)

    Article  Google Scholar 

  103. N. Eustathopoulos, M.G. Nicholas, B. Drevet: Wettability at High Temperatures (Pergamon, Amsterdam 1999)

    Google Scholar 

  104. M. Nosonovsky: Model for solid–liquid and solid–solid friction for rough surfaces with adhesion hysteresis, J. Chem. Phys. 126, 224701 (2007)

    Article  Google Scholar 

  105. Y.T. Cheng, D.E. Rodak, A. Angelopoulos, T. Gacek: Microscopic observations of condensation of water on lotus leaves, Appl. Phys. Lett. 87, 194112 (2005)

    Article  Google Scholar 

  106. A. Tuteja, W. Choi, M. Ma, J.M. Mabry, S.A. Mazzella, G.C. Rutledge, G.H. McKinley, R.E. Cohen: Designing superoleophobic surfaces, Science 318, 1618–1622 (2007)

    Article  Google Scholar 

  107. H. Kamusewitz, W. Possart, D. Paul: The relation between Youngʼs equilibrium contact angle and the hysteresis on rough paraffin wax surfaces, Colloids Surf. A 156, 271–279 (1999)

    Article  Google Scholar 

  108. T.N. Krupenkin, J.A. Taylor, T.M. Schneider, S. Yang: From rolling ball to complete wetting: The dynamic tuning of liquids on nanostructured surfaces, Langmuir 20, 3824–3827 (2004)

    Article  Google Scholar 

  109. V. Bahadur, S.V. Garimella: Electrowetting-based control of static droplet states on rough surfaces, Langmuir 23, 4918–4924 (2007)

    Article  Google Scholar 

  110. X.J. Feng, L. Feng, M.H. Jin, J. Zhai, L. Jiang, D.B. Zhu: Reversible super-hydrophobicity to super-hydrophilicity transition of aligned ZnO nanorod films, J. Am. Chem. Soc. 126, 62–63 (2004)

    Article  Google Scholar 

  111. E. Bormashenko, R. Pogreb, G. Whyman, M. Erlich: Cassie–Wenzel wetting transition in vibrated drops deposited on the rough surfaces: Is dynamic Cassie–Wenzel transition 2-D or 1-D affair?, Langmuir 23, 6501–6503 (2007)

    Article  Google Scholar 

  112. D. Quéré: Nonsticking drops, Rep. Prog. Phys. 68, 2495–2535 (2005)

    Article  Google Scholar 

  113. M. Nosonovsky: Multiscale roughness and stability of superhydrophobic biomimetic interfaces, Langmuir 23, 3157–3161 (2007)

    Article  Google Scholar 

  114. C. Ishino, K. Okumura: Nucleation scenarios for wetting transition on textured surfaces: The effect of contact angle hysteresis, Europhys. Lett. 76, 464–470 (2006)

    Article  Google Scholar 

  115. E. Bormashenko, Y. Bormashenko, T. Stein, G. Whyman, R. Pogreb, Z. Barkay: Environmental scanning electron microscope study of the fine structure of the triple line and Cassie–Wenzel wetting transition for sessile drops deposited on rough polymer substrates, Langmuir 23, 4378–4382 (2007)

    Article  Google Scholar 

  116. E.A. Baker: Chemistry and morphology of plant epicuticular waxes. In: The Plant Cuticle, ed. by D.F. Cutler, K.L. Alvin, C.E. Price (Academic, London 1982) pp. 139–165

    Google Scholar 

  117. R. Jetter, L. Kunst, A.L. Samuels: Composition of plant cuticular waxes. In: Biology of the Plant Cuticle, ed. by M. Riederer, C. Müller (Blackwell, Oxford 2006) pp. 145–181

    Chapter  Google Scholar 

  118. K. Koch, A. Dommisse, W. Barthlott: Chemistry and crystal growth of plant wax tubules of Lotus (Nelumbo nucifera) and Nasturtium (Tropaeolum majus) leaves on technical substrates, Cryst. Growth Des. 6, 2571–2578 (2006)

    Article  Google Scholar 

  119. C.Y. Poon, B. Bhushan: Comparison of surface roughness measurements by stylus profiler, AFM and noncontact optical profiler, Wear 190, 76–88 (1995)

    Article  Google Scholar 

  120. V.N. Koinkar, B. Bhushan: Effect of scan size and surface roughness on microscale friction measurements, J. Appl. Phys. 81, 2472–2479 (1997)

    Article  Google Scholar 

  121. N.S. Tambe, B. Bhushan: Scale dependence of micro-/nanofriction and adhesion of MEMS/NEMS materials, coatings and lubricants, Nanotechnology 15, 1561–1570 (2004)

    Article  Google Scholar 

  122. R. Fürstner, W. Barthlott, C. Neinhuis, P. Walzel: Wetting and self-cleaning properties of artificial superhydrophobic surfaces, Langmuir 21, 956–961 (2005)

    Article  Google Scholar 

  123. L. Gao, T.J. McCarthy: The Lotus effect explained: Two reasons why two length scales of topography are important, Langmuir 22, 2966–2967 (2006)

    Article  Google Scholar 

  124. L. Xu, W. Chen, A. Mulchandani, Y. Yan: Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic, Angew. Chem. Int. Ed. Engl. 44, 6009–6012 (2005)

    Article  Google Scholar 

  125. N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry, P. Roach: Porous materials show superhydrophobic to superhydrophilic switching, Chem. Commun. 25, 3135–3137 (2005)

    Article  Google Scholar 

  126. S. Wang, H. Liu, D. Liu, X. Ma, X. Fang, L. Jiang: Enthalpy driven three state switching of a superhydrophilic/superhydrophobic surfaces, Angew. Chem. Int. Ed. Engl. 46, 3915–3917 (2007)

    Article  Google Scholar 

  127. T.N. Krupenkin, J.A. Taylor, E.N. Wang, P. Kolodner, M. Hodes, T.R. Salamon: Reversible wetting–dewetting transitions on delectrically tunable superhydrophobic nanostructured surfaces, Langmuir 23, 9128–9133 (2007)

    Article  Google Scholar 

  128. A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe: Preparation of transparent superhydrophobic boehmite and silica films by sublimation of aluminum acetylacetonate, Adv. Mater. 11, 1365–1368 (1999)

    Article  Google Scholar 

  129. E. Martines, K. Seunarine, H. Morgan, N. Gadegaard, C.D.W. Wilkinson, M.O. Riehle: Superhydrophobicity and superhydrophilicity of regular nanopatterns, Nano Lett. 5, 2097–2103 (2005)

    Article  Google Scholar 

  130. B. Cappella, E. Bonaccurso: Solvent-assisted nanolithography on polystyrene surfaces using the atomic force microscope, Nanotechnology 18, 155307 (2007)

    Article  Google Scholar 

  131. C. Martín, G. Rius, X. Borrisé, F. Pérez-Murano: Nanolithography on thin layers of PMMA using atomic force microscopy, Nanotechnology 16, 1016–1022 (2005)

    Article  Google Scholar 

  132. M. Ma, R.M. Hill: Superhydrophobic surfaces, Curr. Opin. Colloid Interface Sci. 11, 193–202 (2006)

    Article  Google Scholar 

  133. H. Jansen, M. de Boer, R. Legtenberg, M. Elwenspoek: The black silicon method: A universal method for determining the parameter setting of a fluorine-based reactive ion etcher in deep silicon trench etching with profile control, J. Micromech. Microeng. 5, 115–120 (1995)

    Article  Google Scholar 

  134. S.R. Coulson, I. Woodward, J.P.S. Badyal, S.A. Brewer, C. Willis: Super-repellent composite fluoropolymer surfaces, J. Phys. Chem. B 104, 8836–8840 (2000)

    Article  Google Scholar 

  135. J. Shiu, C. Kuo, P. Chen, C. Mou: Fabrication of tunable superhydrophobic surfaces by nanosphere lithography, Chem. Mater. 16, 561–564 (2004)

    Article  Google Scholar 

  136. K. Teshima, H. Sugimura, Y. Inoue, O. Takai, A. Takano: Transparent ultra water-repellent poly(ethylene terephthalate) substrates fabricated by oxygen plasma treatment and subsequent hydrophobic coating, Appl. Surf. Sci. 244, 619–622 (2005)

    Article  Google Scholar 

  137. M.T. Khorasani, H. Mirzadeh, Z. Kermani: Wettability of porous polydimethylsiloxane surface: Morphology study, Appl. Surf. Sci. 242, 339–345 (2005)

    Article  Google Scholar 

  138. B. Qian, Z. Shen: Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates, Langmuir 21, 9007–9009 (2005)

    Article  Google Scholar 

  139. J.L. Zhang, J.A. Li, Y.C. Han: Superhydrophobic PTFE surfaces by extension, Macromol. Rapid Commun. 25, 1105–1108 (2004)

    Article  Google Scholar 

  140. H. Yabu, M. Shimomura: Single-step fabrication of transparent superhydrophobic porous polymer films, Chem. Mater. 17, 5231–5234 (2005)

    Article  Google Scholar 

  141. M. Ma, R.M. Hill, J.L. Lowery, S.V. Fridrikh, G.C. Rutledge: Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity, Langmuir 21, 5549–5554 (2005)

    Article  Google Scholar 

  142. E. Bormashenko, T. Stein, G. Whyman, Y. Bormashenko, E. Pogreb: Wetting properties of the multiscaled nanostructured polymer and metallic superhydrophobic surfaces, Langmuir 22, 9982–9985 (2006)

    Article  Google Scholar 

  143. W. Lee, M. Jin, W. Yoo, J. Lee: Nanostructuring of a polymeric substrate with well-defined nanometer-scale topography and tailored surface wettability, Langmuir 20, 7665–7669 (2004)

    Article  Google Scholar 

  144. N. Chiou, C. Lu, J. Guan, L.J. Lee, A.J. Epstein: Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties, Nat. Nanotechnol. 2, 354–357 (2007)

    Article  Google Scholar 

  145. N.J. Shirtcliffe, G. McHale, M.I. Newton, G. Chabrol, C.C. Perry: Dual-scale roughness produces unusually water-repellent surfaces, Adv. Mater. 16, 1929–1932 (2004)

    Article  Google Scholar 

  146. M. Hikita, K. Tanaka, T. Nakamura, T. Kajiyama, A. Takahara: Superliquid-repellent surfaces prepared by colloidal silica nanoparticles covered with fluoroalkyl groups, Langmuir 21, 7299–7302 (2005)

    Article  Google Scholar 

  147. H.M. Shang, Y. Wang, S.J. Limmer, T.P. Chou, K. Takahashi, G.Z. Cao: Optically transparent superhydrophobic silica-based films, Thin Solid Films 472, 37–43 (2005)

    Article  Google Scholar 

  148. Y. Zhao, M. Li, Q. Lu, Z. Shi: Superhydrophobic polyimide films with a hierarchical topography: Combined replica molding and layer-by-layer assembly, Langmuir 24, 12651–12657 (2008)

    Article  Google Scholar 

  149. L. Zhai, F.C. Cebeci, R.E. Cohen, M.F. Rubner: Stable superhydrophobic coatings from polyelectrolyte multilayers, Nano Lett. 4, 1349–1353 (2004)

    Article  Google Scholar 

  150. R.J. Klein, P.M. Biesheuvel, B.C. Yu, C.D. Meinhart, F.F. Lange: Producing super-hydrophobic surfaces with nano-silica spheres, Z. Metallkd. 94, 377–380 (2003)

    Google Scholar 

  151. W. Ming, D. Wu, R. van Benthem, G. de With: Superhydrophobic films from raspberry-like particles, Nano Lett. 5, 2298–2301 (2005)

    Article  Google Scholar 

  152. X. Zhang, S. Feng, X. Yu, H. Liu, Y. Fu, Z. Wang, L. Jiang, X. Li: Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters: Toward superhydrophobic surface, J. Am. Chem. Soc. 126, 3064–3065 (2004)

    Article  Google Scholar 

  153. K.K.S. Lau, J. Bico, K.B.K. Teo, M. Chhowalla, G.A.J. Amaratunga, W.I. Milne, G.H. McKinley, K.K. Gleason: Superhydrophobic carbon nanotube forests, Nano Lett. 3, 1701–1705 (2003)

    Article  Google Scholar 

  154. L. Huang, S.P. Lau, H.Y. Yang, E.S.P. Leong, S.F. Yu: Stable superhydrophobic surface via carbon nanotubes coated with a ZnO thin film, J. Phys. Chem. 109, 7746–7748 (2005)

    Article  Google Scholar 

  155. M.E. Abdelsalam, P.N. Bartlett, T. Kelf, J. Baumberg: Wetting of regularly structured gold surfaces, Langmuir 21, 1753–1757 (2005)

    Article  Google Scholar 

  156. L. Zhu, Y. Xiu, J. Xu, P.A. Tamirisa, D.W. Hess, C. Wong: Superhydrophobicity on two-tier rough surfaces fabricated by controlled growth of aligned carbon nanotube arrays coated with fluorocarbon, Langmuir 21, 11208–11212 (2005)

    Article  Google Scholar 

  157. Y. Zhao, T. Tong, L. Delzeit, A. Kashani, M. Meyyappan, A. Majumdar: Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive, J. Vac. Sci. Technol. B 24, 331–335 (2006)

    Article  Google Scholar 

  158. N. Zhao, Q.D. Xie, L.H. Weng, S.Q. Wang, X.Y. Zhang, J. Xu: Superhydrophobic surface from vapor-induced phase separation of copolymer micellar solution, Macromolecules 38, 8996–8999 (2005)

    Article  Google Scholar 

  159. X. Wu, L. Zheng, D. Wu: Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route, Langmuir 21, 2665–2667 (2005)

    Article  Google Scholar 

  160. J.T. Han, Y. Jang, D.Y. Lee, J.H. Park, S.H. Song, D.Y. Ban, K. Cho: Fabrication of a bionic superhydrophobic metal surface by sulfur-induced morphological development, J. Mater. Chem. 15, 3089–3092 (2005)

    Article  Google Scholar 

  161. E. Hosono, S. Fujihara, I. Honma, H. Zhou: Superhydrophobic perpendicular nanopin film by the bottom-up process, J. Am. Chem. Soc. 127, 13458–13459 (2005)

    Article  Google Scholar 

  162. F. Shi, Y. Song, J. Niu, X. Xia, Z. Wang, X. Zhang: Facile method to fabricate a large-scale superhydrophobic surface by galvanic cell reaction, Chem. Mater. 18, 1365–1368 (2006)

    Article  Google Scholar 

  163. M.T. Northen, K.L. Turner: A batch fabricated biomimetic dry adhesive, Nanotechnology 16, 1159–1166 (2005)

    Article  Google Scholar 

  164. M.A.S. Chong, Y.B. Zheng, H. Gao, L.K. Tan: Combinational template-assisted fabrication of hierarchically ordered nanowire arrays on substrates for device applications, Appl. Phys. Lett. 89, 233104 (2006)

    Article  Google Scholar 

  165. Y. Wang, Q. Zhu, H. Zhang: Fabrication and magnetic properties of hierarchical porous hollow nickel microspheres, J. Mater. Chem. 16, 1212–1214 (2006)

    Article  Google Scholar 

  166. D. Kim, W. Hwang, H.C. Park, K.H. Lee: Superhydrophobic micro- and nanostructures based on polymer sticking, Key Eng. Mater. 334/335, 897–900 (2007)

    Article  Google Scholar 

  167. A. del Campo, C. Greiner: SU-8: A photoresist for high-aspect-ratio and 3-D submicron lithography, J. Micromech. Microeng. 17, R81–R95 (2007)

    Article  Google Scholar 

  168. B. Cortese, S.D. Amone, M. Manca, I. Viola, R. Cingolani, G. Gigli: Superhydrophobicity due to the hierarchical scale roughness of PDMS surfaces, Langmuir 24, 2712–2718 (2008)

    Article  Google Scholar 

  169. C.Y. Kuan, M.H. Hon, J.M. Chou, I.C. Leu: Wetting characteristics on micro-/nanostructured zinc oxide coatings, J. Electrochem. Soc. 156, J32–J36 (2009)

    Article  Google Scholar 

  170. Y.C. Jung, B. Bhushan: Technique to measure contact angle of micro/nanodroplets using atomic force microscopy, J. Vac. Sci. Technol. A 26, 777–782 (2008)

    Article  Google Scholar 

  171. M. Brugnara, C. Della Volpe, S. Siboni, D. Zeni: Contact angle analysis on polymethylmethacrylate and commercial wax by using an environmental scanning electron microscope, Scanning 28, 267–273 (2006)

    Article  Google Scholar 

  172. J.P. Cleveland, S. Manne, D. Bocek, P.K. Hansma: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64, 403–405 (1993)

    Article  Google Scholar 

  173. B. Bhushan, G.S. Blackman: Atomic force microscopy of magnetic rigid disks and sliders and its applications to tribology, ASME J. Tribol. 113, 452–457 (1991)

    Article  Google Scholar 

  174. N. Chen, B. Bhushan: Atomic force microscopy studies of conditioner thickness distribution and binding interactions on the hair surface, J. Microsc. 221, 203–215 (2006)

    Article  MathSciNet  Google Scholar 

  175. R.A. Lodge, B. Bhushan: Surface characterization of human hair using tapping mode atomic force microscopy and measurement of conditioner thickness distribution, J. Vac. Sci. Technol. A 24, 1258–1269 (2006)

    Article  Google Scholar 

  176. S.E. Choi, P.J. Yoo, S.J. Baek, T.W. Kim, H.H. Lee: An ultraviolet-curable mold for sub-100 nm lithography, J. Am. Chem. Soc. 126, 7744–7745 (2004)

    Article  Google Scholar 

  177. B. Bhushan, D. Hansford, K.K. Lee: Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices, J. Vac. Sci. Technol. A 24, 1197–1202 (2006)

    Article  Google Scholar 

  178. T. Pompe, S. Herminghaus: Three-phase contact line energetics from nanoscale liquid surface topographies, Phys. Rev. Lett. 85, 1930–1933 (2000)

    Article  Google Scholar 

  179. D. Quéré: Surface wetting model droplets, Nat. Mater. 3, 79–80 (2004)

    Article  Google Scholar 

  180. T. Kasai, B. Bhushan, G. Kulik, L. Barbieri, P. Hoffmann: Micro-/nanotribological study of perfluorosilane SAMs for antistiction and low wear, J. Vac. Sci. Technol. B 23, 995–1003 (2005)

    Article  Google Scholar 

  181. X. Zhang, S. Tan, N. Zhao, X. Guo, X. Zhang, Y. Zhang, J. Xu: Evaporation of sessile water droplets on superhydrophobic natural lotus and biomimetic polymer surfaces, ChemPhysChem 7, 2067–2070 (2006)

    Article  Google Scholar 

  182. K. Koch, A. Dommisse, W. Barthlott, S. Gorb: The use of plant waxes as templates for micro- and nanopatterning of surfaces, Acta Biomater. 3, 905–909 (2007)

    Article  Google Scholar 

  183. K. Koch, A.J. Schulte, A. Fischer, S.N. Gorb, W. Barthlott: A fast and low-cost replication technique for nano- and high-aspect-ratio structures of biological and artificial materials, Bioinspir. Biomim. 3, 046002 (2008)

    Article  Google Scholar 

  184. R.F. Bunshah: Handbook of Deposition Technologies for Films and Coatings: Science, Technology and Applications (Applied Science, Westwood 1994)

    Google Scholar 

  185. A. Niemietz, W. Barthlott, K. Wandelt, K. Koch: Thermal evaporation of multi-component waxes and thermally activated formation of nano-tubules for superhydrophobic surfaces, Prog. Org. Coat. 66(3), 221–227 (2009)

    Article  Google Scholar 

  186. D.L. Dorset, W.A. Pangborn, A.J. Hancock: Epitaxial crystallization of alkane chain lipids for electron diffraction analysis, J. Biochem. Biophys. Methods 8, 29–40 (1983)

    Article  Google Scholar 

  187. K. Koch, W. Barthlott, S. Koch, A. Hommes, K. Wandelt, W. Mamdouh, S. De-Feyter, P. Broekmann: Structural analysis of wheat wax (Triticum aestivum, c.v. Naturastar L.): From the molecular level to three dimensional crystals, Planta 223, 258–270 (2006)

    Article  Google Scholar 

  188. A. Tuteja, W. Choi, G.H. McKinley, R.E. Cohen, M.F. Rubner: Design parameters for superhydrophobicity and superoleophobicity, Science 318, 1618 (2008)

    Article  Google Scholar 

  189. A.I.J.M. van Dijk, L.A. Bruijnzeel, C.J. Rosewell: Rainfall intensity–kinetic energy relationships: A critical literature appraisal, J. Hydrol. 261, 1–23 (2002)

    Article  Google Scholar 

  190. H. Lamb: Hydrodynamics (Cambridge Univ. Press, Cambridge 1932)

    MATH  Google Scholar 

  191. X. Noblin, A. Buguin, F. Brochard-Wyart: Vibrated sessile drops: Transition between pinned and mobile contact line oscillations, Eur. Phys. J. E 14, 395–404 (2004)

    Google Scholar 

  192. F. Celestini, R. Kofman: Vibration of submillimeter-size supported droplets, Phys. Rev. E 73, 041602 (2006)

    Article  Google Scholar 

  193. R.J. Good: A thermodynamic derivation of Wenzelʼs modification of Youngʼs equation for contact angles. Together with a theory of hysteresis, J. Am. Chem. Soc. 74, 5041–5042 (1952)

    Article  Google Scholar 

  194. Y.L. Chen, C.A. Helm, J.N. Israelachvili: Molecular mechanisms associated with adhesion and contact angle hysteresis of monolayer surfaces, J. Phys. Chem. 95, 10736–10747 (1991)

    Article  Google Scholar 

  195. J.F. Joanny, P.G. de Gennes: A model for contact angle hysteresis, J. Chem. Phys. 81, 552–562 (1984)

    Article  Google Scholar 

  196. S.-W. Lee, P.E. Laibinis: Directed movement of liquids on patterned surfaces using noncovalent molecular adsorption, J. Am. Chem. Soc. 122, 5395–5396 (2000)

    Article  Google Scholar 

  197. Y.C. Jung, B. Bhushan: Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/hydrophilicity and oleophobicity/oleophilicity, Langmuir 25, 14165–14173 (2009)

    Article  Google Scholar 

  198. D.R. Lide: CRC Handbook of Chemistry and Physics, 89th edn. (CRC, Boca Raton 2009)

    Google Scholar 

  199. K. Tajima, T. Tsutsui, H. Murata: Thermodynamic relation of interfacial tensions in three fluid phases, Bull. Chem. Soc. Jpn. 53, 1165–1166 (1980)

    Article  Google Scholar 

  200. T. Nishino, M. Meguro, K. Nakamae, M. Matsushita, Y. Ueda: The lowest surface free energy based on –CF_3 alignment, Langmuir 15, 4321–4323 (1999)

    Article  Google Scholar 

  201. S. Wu: Surface-tension of solids-equation of state analysis, J. Colloid Interface Sci. 71, 605–609 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bharat Bhushan , Yong Chae Jung or Michael Nosonovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this chapter

Cite this chapter

Bhushan, B., Jung, Y.C., Nosonovsky, M. (2010). Lotus Effect: Surfaces with Roughness-Induced Superhydrophobicity, Self-Cleaning, and Low Adhesion. In: Bhushan, B. (eds) Springer Handbook of Nanotechnology. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02525-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02525-9_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02524-2

  • Online ISBN: 978-3-642-02525-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics