Skip to main content

Segmentation of Stained Lymphoma Tissue Section Images

  • Conference paper
Book cover Information Technologies in Biomedicine

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 69))

Abstract

In order to obtain supporting tool for the pathologists who are investigating prognostic factors in folicular lymphoma a new method of color images segmentation is proposed. The method works on images acquired from immunohistochemically stained thin tissue sections of lymph nodes coming from patients with folicular lymphoma diagnosis. The proposed method of segmentation consists of: pre-processing, adaptive threshold, watershed segmentation and post-processing. The method is tested on a set of 50 images. Its results are compared with results of manual counting. It has been found that difference between the traditional method results and the proposed method is small for images with up to 100 nuclei while in more complicated images with more then 100 nuclei and with nuclei clusters this difference increases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Swerdlow, S.H., Campo, E., Harris, N.L., Jaffe, E.S., Pileri, S.A., Stein, H., Thiele, J., Vardiman, J.W.: WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC (2007)

    Google Scholar 

  2. Alvaro, T., Lejeune, M., Salvado, M.T., et al.: Immunohistochemical patterns of reactive microenvironment associated with the clinico-biological behavior in follicular lymphoma patients. J. Clin. Oncol. 24(34), 5350–5357 (2006)

    Article  Google Scholar 

  3. Farinha, P., AlTourah, A., Gill, K., Klasa, R., Connors, J.M., Gascoyne, R.D.: The architectural pattern of foxp3-positive t cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood 115(2), 289–295 (2010)

    Google Scholar 

  4. Wahlin, B.E., Aggarwal, M., Montes-Moreno, S., et al.: A unifying microenvironment model in follicular lymphoma: outcome is predicted by programmed death-1–positive, regulatory, cytotoxic, and helper t cells and macrophages. Clin. Cancer Res. 16(2), 637–650 (2010)

    Article  Google Scholar 

  5. Bartels, P.H., Montironi, R., da Silva, D.V., Hamilton, P.W., Thompson, D., Vaught, L., Bartels, H.G.: Tissue architecture analysis inprostate cancer and its precursore: An innovative approach to computerized histometry. Rur. Urol. 35, 484–491 (1999)

    Article  Google Scholar 

  6. Hamilton, P.W., Bartels, P., Wilson, R.H., Sloan, J.M.: Nuclear measurements in normal colorectal glands. Anal. Quant. Cytol. Histol. 17, 397–405 (1995)

    Google Scholar 

  7. Wied, P.B.G.: Automated screening for cervical cancer: Diagnostic decision procedures. Acta. Cytol. 41, 6–10 (1997)

    Google Scholar 

  8. Minot, D.M., Kipp, B.R., Root, R.M., et al.: Automated cellular imaging system iii for assessing her2 status in breast cancer specimens: development of a standardized scoring method that correlates with fish. Am. J. Clin. Pathol. 132(1), 133–138 (2009)

    Article  Google Scholar 

  9. Zhang, K., Prichard, J.W., Yoder, S., De, J., Lin, F.: Utility of skp2 and mib-1 in grading follicular lymphoma using quantitative imaging analysis. Hum. Pathol. 38, 878–882 (2007)

    Article  Google Scholar 

  10. Elhafey, A.S., Papadimitriou, J.C., El-Hakim, M.S., El-Said, A., Ghannam, B.B.: Silverberg sg. computerized image analysis of p53 and proliferating cell nuclear antigen expression in benign, hyperplastic, and malignant endometrium. Arch. Pathol. Lab Med. 125, 872–879 (2001)

    Google Scholar 

  11. Franzen, L.E., Hahn-Stromberg, V., Edvardsson, H., Bodin, L.: Characterization of colon carcinoma growth pattern by computerized morphometry: definition of a complexity index. Int. J. Mol. Med. 22, 465–472 (2008)

    Google Scholar 

  12. Hannen, E.J., van der Laak, J.A., Kerstens, H.M., et al.: Quantification of tumour vascularity in squamous cell carcinoma of the tongue using card amplification, a systematic sampling technique, and true colour image analysis. Anal. Cell. Pathol. 22, 183–192 (2001)

    Google Scholar 

  13. Lehr, H.A., van der Loos, C.M., Teeling, P., et al.: Complete chromogen separation and analysis in double immunohistochemical stains using photoshop-based image analysis. J. Histochem. Cytochem. 47, 119–126 (1999)

    Google Scholar 

  14. Carai, A., Diaz, G., Cruz, S.R., et al.: Computerized quantitative color analysis for histological study of pulmonary fibrosis. Anticancer Res. 22, 3889–3894 (2002)

    Google Scholar 

  15. Loukas, C.G., Wilson, G.D., Vojnovic, B., et al.: An image analysis based approach for automated counting of cancer cell nuclei in tissue sections. Cytometry A 55, 30–42 (2003)

    Article  Google Scholar 

  16. Wang, S., Saboorian, M.H., Frenkel, E.P., et al.: Assessment of her-2/neu status in breast cancer. Automated cellular imaging system (acis)-assisted quantitation of immunohistochemical assay achieves high accuracy in comparison with fluorescence in situ hybridization assay as the standard. Am. J. Clin. Pathol. 116, 495–503 (2001)

    Article  Google Scholar 

  17. Kayser, K., Radziszewski, D., Bzdy, P., et al.: E-health and tissue-based diagnosis: The implementation of virtual pathology institutions. In: Workshop E-health in Com. Euro. (2004)

    Google Scholar 

  18. Schulerud, H., Kristensen, G.B., Liestol, K., et al.: A review of caveats in statistical nuclear image analysis. Analit. Cell. Pathol. 16, 63–82 (1998)

    Google Scholar 

  19. Markiewicz, T., Osowski, S., Patera, J., Kozlowski, W.: Image processing for accurate cell recognition and count on histologic slides. Analyt. Quant. Cytl. Histol. 28(5), 281–291 (2006)

    Google Scholar 

  20. Markiewicz, T., Wisniewski, P., Osowski, S., et al.: Comparative analysis of methods for accurate recognition of cells through nuclei staining of ki-67 in neuroblastoma and estrogen/progesterone status staining in breast cancer. Analyt. Quant. Cytl. Histol. 31(1), 49–62 (2009)

    Google Scholar 

  21. Hyun-Ju, C., Ik-Hwan, C., Nam-Hoom, C., Choi, H.K.: Color image analysis for quantifying renal tumor angiogenesis. Analyt. Quant. Cytl. Histol. 27, 43–51 (2005)

    Google Scholar 

  22. Vandenbroucke, N., Macaire, L., Postaire, J.G.: Color image segmentation by pixel classification in an adapted hybrid color space. Comput. Vis. Image Und. 90, 190–216 (2003)

    Article  Google Scholar 

  23. Park, S.H., Yun, I.D., Lee, S.U.: Color image segmentation based on 3d clustering. morphological approach. Pattern Recognition 31, 1061–1076 (1998)

    Article  Google Scholar 

  24. Koprowski, R., Wróbel, Z.: The cell structures segmentation. Advances in Soft Computing, pp. 569–576. Springer, Heidelberg (2005)

    Google Scholar 

  25. Cha, S.H.: A fast hue-based colour image indexing algorithm. MG&V 11, 285–295 (2002)

    Google Scholar 

  26. Brey, E.M., Lalani, Z., Johnston, C., et al.: Automated selection of dab-labeled tissue for immunohistochemical quantification. J. Histochem. Cytochem. 51, 575–584 (2003)

    Google Scholar 

  27. Fu, K.S., Muib, J.K.: A survey on image segmentation. Pattern Recogn. 13, 3–16 (1981)

    Article  Google Scholar 

  28. Pham, L.D., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 02, 315–337 (2000)

    Article  Google Scholar 

  29. Sezgin, M.: Survey over image thresholding techniques and quantitative performance evaluation (2004)

    Google Scholar 

  30. Lee, C.K., Li, C.H.: Adaptive thresholding via gaussian pyramid. In: International Conference on Circuits and Systems (1991)

    Google Scholar 

  31. Koprowski, R., Wróbel, Z.: Automatic segmentation of biological cell structures based on conditional opening or closing. MG & V 14, 285–307 (2005)

    Google Scholar 

  32. Vincent, L., Soille, P.: Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. Pattern Anal. Mach. Intell. 13, 583–598 (1991)

    Article  Google Scholar 

  33. Adelson, E.H., Anderson, C.H.: Pyramid methods in image processing. RCA Engineer 29(6), 33–41 (1984)

    Google Scholar 

  34. Seidal, T., Balaton, A.J., Battifora, H.: Interpretation and quantification of immunostains. Am. J. Surg. Pathol. 25, 1204–1207 (2001)

    Article  Google Scholar 

  35. Leong, A.S.: Quantitation in immunohistology: fact or fiction? a discussion of variables that influence results. Appl. Immunohistochem. Mol. Morphol. 12, 1–7 (2004)

    Google Scholar 

  36. Serra, J., Vincent, L.: An overview of morphological filtering. Circuits, Systems, and Signal Processing 11, 47–108 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  37. Nieniewski, M.: Morfologia matematyczna w przetwarzaniu obrazow. PLJ Warszawa (1998)

    Google Scholar 

  38. Kan, J., Qing-Min, L., Dai, S.Y.: A novel white blood cell segmentation scheme using scale-space filtering and watershed clustering. In: 2003 International Conference on Machine Learning and Cybernetics, vol. 5, pp. 2820–2825 (2003)

    Google Scholar 

  39. Iwaruski, M.: Metody morfologiczne w przetwarzaniu obrazów cyfrowych. Akademicka Oficyna Wydawnicza EXIT (2009)

    Google Scholar 

  40. Vincent, L.: Morphological grayscale reconstruction in image analysis: Applications and efficient algorithms. IEEE Transactions on Image Processing 2, 176–201 (1993)

    Article  Google Scholar 

  41. Iwanowski, M., Pierre, S.: Morphological Refinement of an Image Segmentation. In: Gagalowicz, A., Philips, W. (eds.) CAIP 2005. LNCS, vol. 3691, pp. 538–545. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Neuman, U., Korzynska, A., Lopez, C., Lejeune, M. (2010). Segmentation of Stained Lymphoma Tissue Section Images. In: Piȩtka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Advances in Intelligent and Soft Computing, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13105-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13105-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13104-2

  • Online ISBN: 978-3-642-13105-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics