Skip to main content

Regulation of the Actin Cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 282))

Abstract

The actin cytoskeleton is fundamental for various motile and morphogenetic processes in cells. The structure and dynamics of the actin cytoskeleton are regulated by a wide array of actin-binding proteins, whose activities are controlled by various signal transduction pathways. Recent studies have shown that certain membrane phospholipids, especially PI(4,S)P2 and PI(3,4,S)P3, regulate actin filament assembly in cells and in cell extracts. PI(4,S)P2 appears to be a general regulator of actin polymerization at the plasma membrane or at membrane microdomains, whereas PI(3,4,S)P3 promotes the assembly of specialized actin filament structures in response to some growth factors. Biochemical studies have demonstrated that the activities of many proteins promoting actin assembly are upregulated by PI(4,S)P2, whereas proteins that inhibit actin assembly or promote filament disassembly are down-regulated by PI(4,S)P2. PI(3,4,S)P3 promotes its effects on the actin cytoskeleton mainly through activation of the Rho family of small GTPases. In addition to their effects on actin dynamics, both PI(4,S)P2 and PI(3,4,S)P3 promote the formation of specific actin filament structures through activation/inactivation of actin filament cross-linking proteins and proteins that mediate cytoskeleton-plasma membrane interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe K, Rossman KL, Liu B, Ritola KD, Chiang D, Campbell SL, Burridge K, Der CJ (2000) Vav2 is an activator of Cdc42, Rac1, and RhoA. J Biol Chem 275:101411–0149

    Google Scholar 

  • Amatruda JF, Cannon JF, Tatchell K, Hug C, Cooper JA (1990) Disruption of the actin cytoskeleton in yeast capping protein mutants. Nature 344:352–354

    Article  PubMed  CAS  Google Scholar 

  • Arber S, Barbayannis FA, Hanser H, Schneider C, Stanyon CA, Bernard O, Caroni P (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805–809

    Article  PubMed  CAS  Google Scholar 

  • Arbuzova A, Murray D, McLaughlin S (1998) MARCKS, membranes, and calmodulin: kinetics of their interaction. Biochim Biophys Acta 1376:369–379

    Article  PubMed  CAS  Google Scholar 

  • Arbuzova A, Schmitz AA, Vergeres G (2002) Cross-talk unfolded: MARCKS proteins. Biochem J 362:1–12

    Article  PubMed  CAS  Google Scholar 

  • Astier C, Raynaud F, Lebart MC, Roustan C, Benyamin Y (1998) Binding of a native titin fragment to actin is regulated by PIP2. FEBS Lett 429:95–98

    Article  PubMed  CAS  Google Scholar 

  • Auger KR, Cantley LC (1991) Novel polyphosphoinositides in cell growth and activation. Cancer Cells 3:263–270

    PubMed  CAS  Google Scholar 

  • Auger KR, Serunian LA, Soltoff SP, Libby P, Cantley LC (1989) PDGF-dependent tyrosine phosphorylation stimulates production of novel polyphosphoinositides in intact cells. Cell 57:167–175

    Article  PubMed  CAS  Google Scholar 

  • Bamburg JR (1999) Proteins of the ADF/cofilin family: essential regulators of actin dynamics. Annu Rev Cell Dev Biol 15:185–230

    Article  PubMed  CAS  Google Scholar 

  • Barkalow K, Witke W, Kwiatkowski DJ, Hartwig JH (1996) Coordinated regulation of platelet actin filament barbed ends by gelsolin and capping protein. J Cell Biol 134:389–399

    Article  PubMed  CAS  Google Scholar 

  • Barret C, Roy C, Montcourrier P, Mangeat P, Niggli V (2000) Mutagenesis of the phosphatidylinositol 4,5-bisphosphate (PIP2) binding site in the NH2-terminal domain of ezrin correlates with its altered cellular distribution. J Cell Biol 151:1067–1080

    Article  PubMed  CAS  Google Scholar 

  • Berg JS, Derfler BH, Pennisi CM, Corey DP, Cheney RE (2000) Myosin-X, a novel myosin with pleckstrin homology domains, associates with regions of dynamic actin. J Cell Sci 3439–3451

    Google Scholar 

  • Bhargavi V, Chari VB, Singh SS (1998) Phosphatidylinositol3-kinase binds to profilin through the p85 alpha subunit and regulates cytoskeletal assembly. Biochem Mol Biol Int 46:241–248

    PubMed  CAS  Google Scholar 

  • Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348:241–255

    Article  PubMed  CAS  Google Scholar 

  • Blanchoin L, Pollard TD (1998) Interaction of actin monomers with Acanthamoeba actophorin (ADF/cofilin) and profilin. J Biol Chem 273:25106–25111

    Article  PubMed  CAS  Google Scholar 

  • Blanchoin L, Pollard TD (1999) Mechanism of interaction of Acanthamoeba actophorin (ADF/cofilin) with actin filaments. J Biol Chem 274:15538–15546

    Article  PubMed  CAS  Google Scholar 

  • Bresnick AR (1999) Molecular mechanisms of nonmuscle myosin-II regulation. Curr Opin Cell Biol 11:26–33

    Article  PubMed  CAS  Google Scholar 

  • Bretscher A, Edwards K, Fehon RG (2002) ERM proteins and merlin: integrators at the cell cortex. Nat Rev Mol Cell Biol 3:586–599

    Article  PubMed  CAS  Google Scholar 

  • Bullard B, Sainsbury G, Miller N (1990) Digestion of proteins associated with the Z-disc by calpain. J Muscle Res Cell Motil 11:271–279

    Article  PubMed  CAS  Google Scholar 

  • Carlier MF, Laurent V, Santolini J, Melki R, Didry D, Xia GX, Hong Y, Chua NH, Pantaloni D (1997) Actin depolymerizing factor (ADF/cofilin) enhances the rate of filament turnover: implication in actin-based motility. J Cell Biol 136:1307–1322

    Article  PubMed  CAS  Google Scholar 

  • Carlier MF, Ressad F, Pantaloni D (1999) Control of actin dynamics in cell motility. Role of ADF/cofilin. J Biol Chem 274:33827–33830

    Article  PubMed  CAS  Google Scholar 

  • Caroni P (2001) New EMBO members’ review: actin cytoskeleton regulation through modulation of PI(4,5)P2 rafts. EMBO J 20:4332–4336

    Article  PubMed  CAS  Google Scholar 

  • Chellaiah M, Fitzgerald C, Alvarez U, Hruska K (1998) c-Src is required for stimulation of gelsolin-associated phosphatidylinositol 3-kinase. J Biol Chem 273:11908–11916

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Murphy-Ullrich JE, Wells A (1996) A role for gelsolin in actuating epidermal growth factor receptor-mediated cell motility. J Cell Biol 134:689–698

    Article  PubMed  CAS  Google Scholar 

  • Chong LD, Traynor-Kaplan A, Bokoch GM, Schwartz MA (1994) The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell 79:507–513

    Article  PubMed  CAS  Google Scholar 

  • Chung CY, Funamoto S, Firtel RA (2001) Signaling pathways controlling cell polarity and chemotaxis. Trends Biochem Sci 26:557–566

    Article  PubMed  CAS  Google Scholar 

  • Cooper JA, Schafer DA (2000) Control of actin assembly and disassembly at filament ends. Curr Opin Cell Biol 12:97–103

    Article  PubMed  CAS  Google Scholar 

  • Cox D, Berg JS, Cammer M, Chinegwundoh JO, Dale BM, Cheney RE, Greenberg S (2002) Myosin X is a downstream effector of PI(3)K during phagocytosis. Nat Cell Biol 4:469–477

    PubMed  CAS  Google Scholar 

  • Crespo P, Schuebel KE, Ostrom AA, Gutkind JS, Bustelo XR (1997) Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 385:169–172

    Article  PubMed  CAS  Google Scholar 

  • Czech MP (2000) PIP2 and PIP3: complex roles at the cell surface. Cell 100:603–606

    Article  PubMed  CAS  Google Scholar 

  • Damen JE, Liu L, Rosten P, Humphries RK, Jefferson AB, Majerus PW, Krystal G (1996) The 145-kDa protein induced to associate with She by multiple cytokines is an inositol tetraphosphate and phosphatidylinositol 3,4,5-triphosphate 5-phosphatase. Proc Natl Acad Sci USA 93:1689–1693

    Article  PubMed  CAS  Google Scholar 

  • Dan C, Kelly A, Bernard 0, Minden A (2001) Cytoskeletal changes regulated by the PAK4 serine/threonine kinase are mediated by LIM kinase 1 and cofilin. J Biol Chem 276:32115–32121

    Article  PubMed  CAS  Google Scholar 

  • Das B, Shu X, Day GJ, Han J, Krishna UM, Falck JR, Broek D (2000) Control of intramolecular interactions between the pleckstrin homology and Dbl homology domains of Vav and Sos1 regulates Rac binding. J Biol Chem 275:15074–15081

    Article  PubMed  CAS  Google Scholar 

  • Derman MP, Toker A, Hartwig JH, Spokes K, Falck JR, Chen CS, Cantley LC, Cantley LG (1997) The lipid products of phosphoinositide 3-kinase increase cell motility through protein kinase C. J Biol Chem 272:6465–6470

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, Pellegrini L, Letinic K, Cestra G., Zoncu R, Voronov S, Chang S, Guo J, Wenk MR, De Camilli P (2002) Recruitment and regulation of phosphatidylinositol phosphate kinase type 1gamma by the FERM domain of talin. Nature 420:85–89

    Article  PubMed  CAS  Google Scholar 

  • Didry D, Carlier MF, Pantaloni D (1998) Synergy between actin depolymerizing factor/cofilin and profilin in increasing actin filament turnover. J Biol Chem 273:25602–25611

    Article  PubMed  CAS  Google Scholar 

  • Dowler S, Currie RA, Campbell DG, Deak M, Kular G, Downes CP, Alessi DR (2000) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J 351:19–31

    Article  PubMed  CAS  Google Scholar 

  • D’Souza-Schorey C, Boshans RL, McDonough M, Stahl PD, Van Aelst L (1997) A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. EMBO J 16:5445–5454

    Article  PubMed  Google Scholar 

  • Eden S, Rohatgi R, Podtelejnikov AV, Mann M, Kirschner MW (2002) Mechanism of regulation of WAVE1-induced actin nucleation by Rac1 and Nck. Nature 418:790–793

    Article  PubMed  CAS  Google Scholar 

  • Edwards DC, Sanders LC, Bokoch GM, Gill GN (1999) Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nature Cell Biol 1:253–259

    Article  PubMed  CAS  Google Scholar 

  • Faix J, Steinmetz M, Boves H, Kammerer RA, Lottspeich F, Mintert U, Murphy J, Stock A, Aebi U, Gerisch G (1996) Cortexillins, major determinants of cell shape and size, are actin-bundling proteins with a parallel coiled-coil tail. Cell 86:631–642

    Article  PubMed  CAS  Google Scholar 

  • Fedorov AA, Fedorov E, Gertler F, Almo SC (1999) Structure of EVH1, a novel pro line-rich ligand-binding module involved in cytoskeletal dynamics and neural function. Nat Struct Biol 6:661–665

    Article  PubMed  CAS  Google Scholar 

  • Ferguson KM, Kavran JM, Sankaran VG, Fournier E, Isakoff SJ, Skolnik EY, Lemmon MA (2000) Structural basis for discrimination of 3-phosphoinositides by pleckstrin homology domains. Mol Cell 6:373–384

    Article  PubMed  CAS  Google Scholar 

  • Flanagan LA, Cunningham CC, Chen J, Prestwich GD, Kosik KS, Janmey PA (1997) The structure of divalent cation-induced aggregates of PIP2 and their alteration by gelsolin and tau. Biophys J 73:1440–1447

    Article  PubMed  CAS  Google Scholar 

  • Franke TF, Kaplan DR, Cantley LC, Toker A (1997) Direct regulation of the Akt proto-oncogene product by phosphatidylinositol-3,4-bisphosphate. Science 275:665–668

    Article  PubMed  CAS  Google Scholar 

  • Fruman DA, Meyers RE, Cantley LC (1998) Phosphoinositide kinases. Annu Rev Biochem 67:481–507

    Article  PubMed  CAS  Google Scholar 

  • Fukami K, Endo T, Imamura M, Takenawa T (1994) alpha-Actinin and vinculin are PIP2-binding proteins involved in signaling by tyrosine kinase. J Biol Chem 269:1518–1522

    PubMed  CAS  Google Scholar 

  • Fukami K, Sawada N, Endo T, Takenawa T (1996) Identification of a phosphatidylinositol 4,5-bisphosphate-binding site in chicken skeletal muscle alpha-actinin. J Biol Chem 271:2646–2650

    Article  PubMed  CAS  Google Scholar 

  • Furuhashi K, Inagaki M, Hatano S, Fukami K, Takenawa T (1992) Inositol phospholipid-induced suppression of F-actin-gelating activity of smooth muscle filamin. Biochem Biophys Res Commun 184:1261–1265

    Article  PubMed  CAS  Google Scholar 

  • Gibson TJ, Hyvonen M, Musacchio A, Saraste M, Birney E (1994) PH domain: the first anniversary. Trends Biochem Sci 19:349–353

    Article  PubMed  CAS  Google Scholar 

  • Gilmore AP, Burridge K (1996) Regulation of vinculin binding to talin and actin by phosphatidyl-inositol-4-5-bisphosphate. Nature 381:531–535

    Article  PubMed  CAS  Google Scholar 

  • Glaser M, Wanaski S, Buser CA, Boguslavsky V, Rashidzada W, Morris A, Rebecchi M, Scarlata SF, Runnels LW, Prestwich GD, Chen J, Aderem A, Ahn J, McLaughlin S (1996) Myristoylated alanine-rich C kinase substrate (MARCKS) produces reversible inhibition of phospholipase C by sequestering phosphatidylinositol 4,5-bisphosphate in lateral domains. J Biol Chem 271:26187–26193

    Article  PubMed  CAS  Google Scholar 

  • Glogauer M, Hartwig J, Stossel T (2000) Two pathways through Cdc42 couple the N-formyl receptor to actin nucleation in permeabilized human neutrophils. J Cell Biol 150:785–796

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clermont PJ, Machesky LM, Baldassare JJ, Pollard TD (1990) The actin-binding protein profilin binds to PIP2 and inhibits its hydrolysis by phospholipase C. Science 247:1575–1578

    Article  PubMed  CAS  Google Scholar 

  • Goldschmidt-Clerrnont PJ, Kim JW, Machesky LM, Rhee SG, Pollard TD (1991) Regulation of phospholipase C-gamma 1 by profilin and tyrosine phosphorylation. Science 251:1231–1233

    Article  Google Scholar 

  • Goode BL, Drubin DG, Lappalainen P (1998) Regulation of the cortical actin cytoskeleton in budding yeast by twinfilin, a ubiquitous actin monomer-sequestering protein. J Cell Biol 142:723–733

    Article  PubMed  CAS  Google Scholar 

  • Gray A, Van Der Kaay J, Downes CP (1999) The pleckstrin homology domains of protein kinase Band GRP1 (general receptor for phosphoinositides-1) are sensitive and selective probes for the cellular detection of phosphatidylinositol 3,4-bisphosphate and/ or phosphatidylinositol 3,4,5-trisphosphate in vivo. Biochem J 344:929–936

    Article  PubMed  CAS  Google Scholar 

  • Greenwood JA, Theibert AB, Prestwich GD, Murphy-Ullrich JE (2000) Restructuring of focal adhesion plaques by PI 3-kinase. Regulation by PtdIns (3,4,5)-p(3) binding to alpha-actinin. J Cell Biol 150:627–642

    Article  PubMed  CAS  Google Scholar 

  • Gungabissoon RA, Hang C-J, Drøbak BK, Maciver SK, Hussey P (1998) Interaction of maize-actin-depolymerising factor with actin and phosphoinositides and its inhibition of plant phospholipase C. Plant J 16:689–69

    Article  CAS  Google Scholar 

  • Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514

    Article  PubMed  CAS  Google Scholar 

  • Hamada K, Shimizu T, Matsui T, Tsukita S, Hakoshima T (2000) Structural basis of the membrane-targeting and unmasking mechanisms of the radixin FERM domain. EMBO J 19:4449–4462

    Article  PubMed  CAS  Google Scholar 

  • Han J, Luby-Phelps K, Das B, Shu X, Xia Y, Mosteller RD, Krishna UM, Falck JR, White MA, Broek D (1998) Role of substrates and products of PI 3-kinase in regulating activation of Rac-related guanosine triphosphatases by Vav. Science 279:558–560

    Article  PubMed  CAS  Google Scholar 

  • Han X, Li G, Lin K (1997) Interactions between smooth muscle alpha-actinin and lipid bilayers. Biochem 36:10364–10371

    Article  CAS  Google Scholar 

  • Hart MC, Cooper JA (1999) Vertebrate isoforms of actin capping prote in beta have distinct functions In vivo. J Cell Biol 147:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Hartwig JH, Bokoch GM, Carpenter CL, Janmey PA, Taylor LA, Toker A, Stossel TP (1995) Thrombin receptor ligation and activated Rac uncap actin filament barbed ends through phosphoinositide synthesis in permeabilized human platelets. Cell 82:643–653

    Article  PubMed  CAS  Google Scholar 

  • Haslam RJ, Koide HB, Hemmings BA (1993) Pleckstrin domain homology. Nature 363:309–310

    Article  PubMed  CAS  Google Scholar 

  • Haugh JM, Codazzi F, Teruel M, Meyer T (2000) Spatial sensing in fibroblasts mediated by 3′ phosphoinositides. J Cell Biol 151:1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Hawkins PT, Eguinoa A, Qiu RG, Stokoe D, Cooke FT, Walters R, Wennström S, Claesson-Welsh L, Evans T, Symons M (1995) PDGF stimulates an increase in GTP-Racvia activation of phosphoinositide 3-kinase. Curr Biol 5:393–403

    Article  PubMed  CAS  Google Scholar 

  • He H, Watanabe T, Zhan X, Huang C, Schuuring E, Fukami K, Takenawa T, Kumar CC, Simpson RJ, Maruta H (1998) Role of phosphatidylinositol 4,5-bisphosphate in Ras/Rac-induced disruption of the cortactin-actomyosin II complex and malignant transformation. Mol Cell Biol 18:3829–3837

    PubMed  CAS  Google Scholar 

  • Higgs HN, Pollard TD (2000) Activation by Cdc42 and PIP(2) of Wiskott-Aldrich syndrome protein (WASp) stimulates actin nucleation by Arp2/3 complex. J Cell Biol 150:1311–1320

    Article  PubMed  CAS  Google Scholar 

  • Hilpelä P, Oberbanscheidt P, Hahne P, Hund M, Kalhammer G, Small JV, Bähler M (2003) SWAP-70 identifies a transitional subset of actin filaments in motile cells. Mol Biol Cell (in press)

    Google Scholar 

  • Hirao M, Sato N, Kondo T, Yonemura S, Monden M, Sasaki T, Takai Y, Tsukita S (1996) Regulation mechanism of ERM (ezrin/radixin/moesin) prote in/plasma membrane association: possible involvement of phosphatidylinositol turnover and Rho-dependent signaling pathway. J Cell Biol 135:37–51

    Article  PubMed  CAS  Google Scholar 

  • Hirose M, Ishizaki T, Watanabe N, Uehata M, Kranenburg O, Moolenaar WH, Matsumura F, Maekawa M, Bito H, Narumiya S (1998) Molecular dissection of the Rho-associated protein kinase (p160 ROCK)-regulated neuri te remodeling in neuroblastoma NlE-115 cells. J Cell Biol 141:1625–1636

    Article  PubMed  CAS  Google Scholar 

  • Hirsch E, Katanaev VL, Garlanda C, Azzolino O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann MP (2000) Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287:1049–1053

    Article  PubMed  CAS  Google Scholar 

  • Homma K, Saito J, Ikebe R, Ikebe M (2001) Motor function and regulation of myosin X. J Biol Chem 276:34348–34354

    Article  PubMed  CAS  Google Scholar 

  • Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H, Watanabe H, Kawamoto K, Nakayama K, Morris AJ, Frohman MA, Kanaho Y (1999) Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation. Cell 99:521–532

    Article  PubMed  CAS  Google Scholar 

  • Hopmann R, Cooper JA, Miller KG (1996) Actin organization, bristle morphology, and viability are affected by actin capping protein mutations in Drosophila. J Cell Biol 133:1293–1305

    Article  PubMed  CAS  Google Scholar 

  • Insall RH, Weiner OD (2001) PIP3, PIP2, and cell movement—similar messages, different meanings? Dev Cell 1:743–747

    Article  PubMed  CAS  Google Scholar 

  • Isakoff SJ, Cardozo T, Andreev J, Li Z, Ferguson KM, Abagyan R, Lemmon MA, Aronheim A, Skolnik EY (1998) Identification and analysis of PH domain-containing targets of phosphatidylinositol 3-kinase using a novel in vivo assay in yeast. EMBO J 17:5374–5387

    Article  PubMed  CAS  Google Scholar 

  • Ishihara H, Shibasaki Y, Kizuki N, Katagiri H, Yazaki Y, Asano T, Oka Y (1996) Cloning of cDNAs encoding two isoforms of 68-kDa type I phosphatidylinositol-4phosphate 5-kinase. J Biol Chem 271:23611–23614

    Article  PubMed  CAS  Google Scholar 

  • Ishihara H, Shibasaki Y, Kizuki N, Wada T, Yazaki Y, Asano T, Oka Y (1998) Type I phosphatidylinositol-4-phosphate 5-kinases. Cloning of the third isoform and deletion/substitution analysis of members of this novel lipid kinase family. J Biol Chem 273:8741–8748

    Article  PubMed  CAS  Google Scholar 

  • Ishihara H, Sasaoka T, Hori H, Wada T, Hirai H, Haruta T, Langlois WJ, Kobayashi M (1999) Molecular cloning of rat SH2-containing inositol phosphatase 2 (SHIP2) and its role in the regulation of insulin signaling. Biochem Biophys Res Commun 260:265–272

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Stossel TP, Allen PG (1987) Modulation of gelsolin function by phosphatidylinositol 4,5-bisphosphate. Nature 325:362–364

    Article  PubMed  CAS  Google Scholar 

  • Janmey PA, Lamb J, Allen PG, Matsudaira PT (1992) Phosphoinositide-binding peptides derived from the sequences of gelsolin and villin. J Biol Chem 267:11818–11823

    PubMed  CAS  Google Scholar 

  • Jones DH, Morris JB, Morgan CP, Kondo H, Irvine RF, Cockcroft S (2000) Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible for phosphatidylinositol 4,5-bisphosphate synthesis in the golgi compartment. J Biol Chem 275:13962–13966

    Article  PubMed  CAS  Google Scholar 

  • Kavran JM, Klein DE, Lee A, Falasca M, Isakoff SJ, Skolnik EY, Lemmon MA (1998) Specificity and promiscuity in phosphoinositide binding by pleckstrin homology domains. J Biol Chem 273:30497–30508

    Article  PubMed  CAS  Google Scholar 

  • Keely PJ, Westwick JK, Whitehead IP, Der CJ, Parise LV (1997) Cdc42 and Rac1 induce integrin-mediated cell motility and invasiveness through PI(3)K. Nature 390:632–636

    Article  PubMed  CAS  Google Scholar 

  • Kim AS, Kakalis LT, Abdul-Manan N, Liu GA, Rosen MK (2000) Autoinhibition and activation mechanisms of the Wiskott-Aldrich syndrome protein. Nature 404:151–158

    Article  PubMed  CAS  Google Scholar 

  • Kim J, Shishido T, Hang X, Aderem A, McLaughlin S (1994) Phosphorylation, high ionic strength, and calmodulin reverse the binding of MARCKS to phospholipid vesicles. J Biol Chem 269:28214–28219

    PubMed  CAS  Google Scholar 

  • Kraulis PJ (1991) MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J Appl Crystallogr 24:946–950

    Article  Google Scholar 

  • Kwiatkowski DJ (1999) Functions of gelsolin: motility, signaling, apoptosis, cancer. Curr Opin Cell Biol 11:103–108

    Article  PubMed  CAS  Google Scholar 

  • Lambrechts A, Verschelde JL, Jonckheere V, Goethals M, Vandekerckhove J, Ampe C (1997) The mammalian profilin isoforms display complementary affinities for PIP2 and proline-rich sequences. EMBO J 16:484–494

    Article  PubMed  CAS  Google Scholar 

  • Lambrechts A, Braun A, Jonckheere V, Aszodi A, Lanier LM, Robbens J, Van C, I, Vandekerckhove J, Fassler R, Ampe C (2000) Profilin II is alternatively spliced, resulting in profilin isoforms that are differentially expressed and have distinct biochemical properties. Mol Cell Biol 20:8209–8219

    Article  PubMed  CAS  Google Scholar 

  • Lambrechts A, Jonckheere V, Dewitte D, Vandekerckhove J, Ampe C (2002) Mutational analysis of human profilin I reveals a second PI(4,5)-P2 binding site neighbouring the poly(L-proline) binding site. BMC Biochem 3:12

    Article  PubMed  Google Scholar 

  • Lappalainen P, Fedorov EV, Fedorov AA, Almo SC, Drubin, DG (1997) Essential functions and actin-binding surfaces of yeast cofilin revealed by systematic mutagenesis. EMBO J 16:5520–5530

    Article  PubMed  CAS  Google Scholar 

  • Lassing I, Lindberg U (1985) Specific interaction between phosphatidylinositol 4,5-bisphosphate and profilactin. Nature 314:472–474

    Article  PubMed  CAS  Google Scholar 

  • Laux T, Fukami K, Thelen M, Golub T, Frey D, Caroni P (2000) GAP43, MARCKS, and CAP23 modulate PI(4,5)P(2) at plasmalemmal rafts, and regulate cell cortex actin dynamics through a common mechanism. J Cell Biol 149:1455–1472

    Article  PubMed  CAS  Google Scholar 

  • Lemmon MA, Ferguson KM (2000) Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 350:1–18

    Article  PubMed  CAS  Google Scholar 

  • Leung T, Chen XQ, Tan I, Manser E, Lim L (1998) Myotonic dystrophy kinase-related Cdc42-binding kinase acts as a Cdc42 effector in promoting cytoskeletal reorganization. Mol Cell Biol 18:130–140

    PubMed  CAS  Google Scholar 

  • Li Z, Hang H, Xie W, Zhang Z, Smrcka AV, Wu D (2000) Roles of PLC-beta2 and-beta3 and PI3Kgamma in chemoattractant-mediated signal transduction. Science 287:1046–1049

    Article  PubMed  CAS  Google Scholar 

  • Lin KM, Wenegieme E, Lu PJ, Chen CS, Yin HL (1997) Gelsolin binding to phosphatidylinositol 4,5-bisphosphate is modulated by calcium and pH. J Biol Chem 272:20443–20450

    Article  PubMed  CAS  Google Scholar 

  • Ling K, Doughman RL, Firestone AJ, Bunce MW, Anderson RA (2002) Type Igamma phosphatidylinositol phosphate kinase targets and regulates focal adhesions. Nature 420:89–93

    Article  PubMed  CAS  Google Scholar 

  • Lioubin MN, Algate PA, Tsai S, Carlberg K, Aebersold A, Rohrschneider LR (1996) p150Ship, a signal transduction molecule with inositol polyphosphate-5-phosphatase activity. Genes Dev 10:1084–1095

    Article  PubMed  CAS  Google Scholar 

  • Liu BP, Burridge K (2000) Vav2 activates Rac1, Cdc42, and RhoA downstream from growth factor receptors but not beta1 integrins. Mol Cell Biol 20:7160–7169

    Article  PubMed  CAS  Google Scholar 

  • Loijens JC, Anderson RA (1996) Type I phosphatidylinositol-4-phosphate 5-kinases are distinct members of this novel lipid kinase family. J Biol Chem 271:32937–32943

    Article  PubMed  CAS  Google Scholar 

  • Lu PJ, Shieh WR, Rhee SG, Yin HL, Chen CS (1996) Lipid products of phosphoinositide 3-kinase bind human profilin with high affinity. Biochem 35:14027–14034

    Article  CAS  Google Scholar 

  • Ma L, Cantley LC, Janmey PA, Kirschner MW (1998) Corequirement of specific phosphoinositides and small GTP-binding protein Cdc42 in inducing actin assembly in Xenopus egg extracts. J Cell Biol 140:1125–1136

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM, Insall RH (1998) Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 8:1347–1356

    Article  PubMed  CAS  Google Scholar 

  • Machesky LM, Goldschmidt-Clermont PJ, Pollard TD (1990) The affinities of human platelet and Acanthamoeba profilin isoforms for polyphosphoinositides account for their relative abilities to inhibit phospholipase C. Cell Regulation 1:937–950

    PubMed  CAS  Google Scholar 

  • Maciver SK, Weeds AG (1994) Actophorin preferentially binds monomeric ADP-actin over ATP-bound actin: consequences for cell locomotion. FEBS Lett 347:251–256

    Article  PubMed  CAS  Google Scholar 

  • Maehama T, Taylor GS, Dixon JE (200l) PTEN and myotubularin: novel phosphoinositide phosphatases. Annu Rev Biochem 70:247–279

    Google Scholar 

  • Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S (1999) Signaling from Rho to the actin cytoskeleton through protein kinases ROCKand LIM-kinase. Science 285:895–898

    Article  PubMed  CAS  Google Scholar 

  • Marshall AJ, Krahn AK, Ma K, Duronio V, Hou S (2002) TAPP1 and TAPP2 are targets of phosphatidylinositol 3-kinase signaling in B cells: sustained plasma membrane recruitment triggered by the B-cell antigen receptor. Mol Cell Biol 22:5479–5491

    Article  PubMed  CAS  Google Scholar 

  • Martel V, Racaud-Sultan C, Dupe S, Marie C, Paulhe F, Galmiche A, Block MR, Albiges-Rizo C (200l) Conformation, localization, and integrin binding of talin depend on its interaction with phosphoinositides. J Biol Chem 276:21217–21227

    Google Scholar 

  • Martin TF (1998) Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 14:231–264

    Article  PubMed  CAS  Google Scholar 

  • Matsui T, Yonemura S, Tsukita S (1999) Activation of ERM proteins in vivo by Rho involves phosphatidyl-inositol 4-phosphate 5-kinase and not ROCK kinases. Curr Biol 9:1259–1262

    Article  PubMed  CAS  Google Scholar 

  • Mayer BJ, Ren R, Clark KL, Baltimore D (1993) A putative modular domain present in diverse signaling proteins. Cell 73:629–630

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin PJ, Gooch JT, Mannherz HG, Weeds AG(1993) Structure of gelsolin segment 1-actin complex and the mechanism of filament severing. Nature 364:685–692

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin S, Wang J, Gambhir A, Murray D (2002) PIP2 and proteins: interactions, organization, and information flow. Annu Rev Biophys Biomol Struct 31:151–175

    Article  PubMed  CAS  Google Scholar 

  • Meerschaert K, De C, V, De Ville Y, Vandekerckhove J, Gettemans J (1998) Gelsolin and functionally similar actin-binding proteins are regulated by lysophosphatidic acid. EMBO J 17:5923–5932

    Article  PubMed  CAS  Google Scholar 

  • Meili R, Ellsworth C, Lee S, Reddy TB, Ma H, Firtel RA (1999) Chemoattractant-mediated transient activation and membrane localization of Akt/PKB is required for efficient chemotaxis to cAMP in Dictyostelium. EMBO J 18:2092–2105

    Article  PubMed  CAS  Google Scholar 

  • Merrit EA, Murphy, Michael EP (1994) Raster3D Version 2.0: Aprogram for photorealistic molecular graphics. Acta Crystallogr Sect D Biol Crystallogr D50:873

    Google Scholar 

  • Michiels F, Stam JC, Hordijk PL, van der Kammen RA, Ruuls-Van SL, Feltkamp CA, Collard JG (1997) Regulated membrane localization of Tiam1, mediated by the NH2-terminal pleckstrin homology domain, is required for Rac-dependent membrane ruffling and C-Jun NH2-terminal kinase activation. J Cell Biol 137:387–398

    Article  PubMed  CAS  Google Scholar 

  • Miki H, Takenawa T (1998) Direct binding of the verprolin-homology domain in NWASP to actin is essential for cytoskeletal reorganization. Biochem Biophys Res Commun 243:73–78

    Article  PubMed  CAS  Google Scholar 

  • Moriyama K, Yonezawa N, Sakai H, Yahara I, Nishida E (1992) Mutational analysis of an actin-binding site of cofilin and characterization of chimeric proteins between cofilin and destrin. J Biol Chem 267:7240–7244

    PubMed  CAS  Google Scholar 

  • Movilla N, Bustelo XR (1999) Biological and regulatory properties of Vav-3, a new member of the Vav family of oncoproteins. Mol Cell Biol 19:7870–7885

    PubMed  CAS  Google Scholar 

  • Mullins RD, Heuser JA, Pollard TD (1998) The interaction of Arp2/3 complex with actin: nucleation, high affinity pointed end capping, and formation of branching networks of filaments. Proc Natl Acad Sci USA 95:6181–6186

    Article  PubMed  CAS  Google Scholar 

  • Murthy A, Gonzalez-Agosti C, Cordero E, Pinney D, Candia C, Solomon F, Gusella J, Ramesh V (1998) NHE-RF, a regulatory cofactor for Na+-H+ exchange, is a common interactor for merlin and ERM (MERM) proteins. J Biol Chem 273:1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Musacchio A, Gibson T, Rice P, Thompson J, Saraste M (1993) The PH domain: a common piece in the structural patchwork of signalling proteins. Trends Biochem Sci 18:343–348

    Article  PubMed  CAS  Google Scholar 

  • Nakamura F, Huang L, Pestonjamasp K, Luna EJ, Furthmayr H (1999) Regulation of F-actin binding to platelet moesin in vitro by both phosphorylation of threonine 558 and polyphosphatidylinositides. Mol Biol Cell 10:2669–2685

    PubMed  CAS  Google Scholar 

  • Niggli V (2000) A membrane-permeant ester of phosphatidylinositol 3,4, 5-trisphosphate (PIP3) is an activator of human neutrophil migration. FEBS Lett 473:217–221

    Article  PubMed  CAS  Google Scholar 

  • Niggli V (2001) Structural properties of lipid-binding sites in cytoskeletal proteins. Trends Biochem Sci 26:604–611

    Article  PubMed  CAS  Google Scholar 

  • Nobes CD, Hall A (1995) Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81:53–62

    Article  PubMed  CAS  Google Scholar 

  • Ohmori S, Sakai N, Shirai Y, Yamamoto H, Miyamoto E, Shimizu N, Saito N (2000) Importance of protein kinase C targeting for the phosphorylation of its substrate, myristoylated alanine-rich C-kinase substrate. J Biol Chem 275:26449–26457

    Article  PubMed  CAS  Google Scholar 

  • Ojala PJ, Paavilainen V, Lappalainen P (2001) Identification of yeast cofilin residues specific for actin monomer and PIP2 binding. Biochemistry 40:15562–15569

    Article  PubMed  CAS  Google Scholar 

  • Olave IA, Reck-Peterson SL, Crabtree GR (2002) Nuclear actin and actin-related proteins in chromatin remodeling. Annu Rev Biochem 71:755–781

    Article  PubMed  CAS  Google Scholar 

  • Palmgren S, Ojala PJ, Wear MA, Cooper JA, Lappalainen P (2001) Interactions with PIP2, ADP-actin monomers, and capping protein regulate the activity and localization of yeast twinfilin. J Cell Biol 155:251–260

    Article  PubMed  CAS  Google Scholar 

  • Palmgren S, Vartiainen M, Lappalainen P (2002) Twinfilin, a molecular mailman for actin monomers. J Cell Sci 115:881–886

    PubMed  CAS  Google Scholar 

  • Panebra A, Ma SX, Zhai LW, Wang XT, Rhee SG, Khurana S (2001) Regulation of phospholipase C-γ 1 by the actin-regulatory protein villin. Am J Physiol Cell Physiol 281:C1046–C1058

    PubMed  CAS  Google Scholar 

  • Pantaloni D, Carlier MF (1993) How profilin promotes actin filament assembly in the presence of thymo sin beta 4. Cell 75:1007–1014

    Article  PubMed  CAS  Google Scholar 

  • Pearson MA, Reczek D, Bretscher A, Karplus PA (2000) Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 101:259–270

    Article  PubMed  CAS  Google Scholar 

  • Pollard TD, Blanchoin L, Mullins RD (2000) Molecular mechanisms controlling actin filament dynamics in nonmuscle cells. Annu Rev Biophys Biomol Struct 29:545–576

    Article  PubMed  CAS  Google Scholar 

  • Prehoda KE, Scott JA, Mullins RD, Lim WA (2000) Integration of multiple signals through cooperative regulation of the N-WASP-Arp2/3 complex. Science 290:801–806

    Article  PubMed  CAS  Google Scholar 

  • Pruyne D, Evangelista M, Yang C, Bi E, Zigmond S, Bretscher A, Boone C (2002) Role of formins in actin assembly: nucleation and barbed-end association. Science 297:612–615

    Article  PubMed  CAS  Google Scholar 

  • Raghunathan V, Mowery P, Rozycki M, Lindberg U, Schutt (1992) Structural changes in profilin accompany its binding to phosphatidylinositol, 4,5-bisphosphate. FEBS Lett 297:46–50

    Article  PubMed  CAS  Google Scholar 

  • Rameh LE, Cantley LC (1999) The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem 274:8347–8350

    Article  PubMed  CAS  Google Scholar 

  • Rameh LE, Arvidsson A, Carraway KL, Couvillon AD, Rathbun G, Crompton A, Van-Renterghem B, Czech MP, Ravichandran KS, Burakoff SJ, Wang DS, Chen CS, Cantley LC (1997) A comparative analysis of the phosphoinositide binding specificity of pleckstrin homology domains. J Biol Chem 272:22059–22066

    Article  PubMed  CAS  Google Scholar 

  • Raucher D, Stauffer T, Chen W, Shen K, Guo S, York JD, Sheetz MP, Meyer T (2000) Phosphatidylinositol 4,5-bisphosphate functions as a second messenger that regulates cytoskeleton-plasma membrane adhesion. Cell 100:221–228

    Article  PubMed  CAS  Google Scholar 

  • Reczek D, Berryman M, Bretscher A (1997) Identification of EBP50: A PDZ-containing phosphoprotein that associates with members of the ezrin-radixin-moesin family. J Cell Biol 139:169–179

    Article  PubMed  CAS  Google Scholar 

  • Rees DJ, Ades SE, Singer SJ, Hynes RO (1990) Sequence and domain structure of talin. Nature 347:685–689

    Article  PubMed  CAS  Google Scholar 

  • Ren XD, Schwartz MA (1998) Regulation of inositol lipid kina ses by Rho and Rac. Curr Opin Genet Dev 8:63–67

    Article  PubMed  CAS  Google Scholar 

  • Ren XD, Bokoch GM, Traynor-Kaplan A, Jenkins GH, Anderson RA, Schwartz MA (1996) Physical association of the small GTPase Rho with a 68-kDa phosphatidylinositol 4-phosphate 5-kinase in Swiss 3T3 cells. Mol Biol Cell 7:435–442

    PubMed  CAS  Google Scholar 

  • Rickert P, Weiner OD, Wang F, Bourne HR, Servant G (2000) Leukocytes navigate by compass: roles of PI3Kgamma and its lipid products. Trends Cell Biol 10:466–473

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A (1992) The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    Article  PubMed  CAS  Google Scholar 

  • Rodal AA, Tetreault JW, Lappalainen P, Drubin DG, Amberg DC (1999) Aip1p interacts with cofilin to disassemble actin filaments. J Cell Biol 145:1251–1264

    Article  PubMed  CAS  Google Scholar 

  • Rohatgi R, Ma L, Miki H, Lopez M, Kirchhausen T, Takenawa T, Kirschner MW (1999) The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97:221–231

    Article  PubMed  CAS  Google Scholar 

  • Rohatgi R, Ho HY, Kirschner MW (2000) Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J Cell Biol 150:1299–1310

    Article  PubMed  CAS  Google Scholar 

  • Rohatgi R, Nollau P, Ho HY, Kirschner MW, Mayer BJ (2001) Nck and phosphatidylinositol 4,5-bisphosphate synergistically activate actin polymerization through the N-WASP-Arp2/3 pathway. J Biol Chem 276:26448–26452

    Article  PubMed  CAS  Google Scholar 

  • Rozelle AL, Machesky LM, Yamamoto M, Driessens MH, Insall RH, Roth MG, Luby-Phelps K, Marriott G, Hall A, Yin HL (2000) Phosphatidylinositol 4,5-bisphosphate induces actin-based movement of raft-enriched vesicles through WASPArp2/3. Curr Biol 10:311–320

    Article  PubMed  CAS  Google Scholar 

  • Russo C, Gao Y, Mancini P, Vanni C, Porotto M, Falasca M, Torrisi MR, Zheng Y, Eva A (2001) Modulation of oncogenic DBL activity by phosphoinositol phosphate binding to pleckstrin homology domain. J Biol Chem 276:19524–19531

    Article  PubMed  CAS  Google Scholar 

  • Sagot I, Klee SK, Pellman D (2002a) Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 4:42–50

    PubMed  CAS  Google Scholar 

  • Sagot I, Rodal AA, Moseley J, Goode BL, Pellman D (2002b) An actin nucleation mechanism mediated by Bni1 and profilin. Nat Cell Biol 4:626–631

    PubMed  CAS  Google Scholar 

  • Sakisaka T, Itoh T, Miura K, Takenawa T (1997) Phosphatidylinositol 4,5-bisphosphate phosphatase regulates the rearrangement of actin filaments. Mol Cell Biol 17:3841–3849

    PubMed  CAS  Google Scholar 

  • Sander EE, van Delft S, ten Klooster JP, Reid T, van der Kammen RA, Michiels F, Collard JG (1998) Matrix-dependent Tiam1/Rac signaling in epithelial cells promotes either cell-cell adhesion or cell migration and is regulated by phosphatidylinositol 3-kinase. J Cell Biol 143:1385–1398

    Article  PubMed  CAS  Google Scholar 

  • Sanders LC, Matsumura F, Bokoch GM, de Lanerolle P (1999) Inhibition of myosin light chain kinase by p21-activated kinase. Science 283:2083–2085

    Article  PubMed  CAS  Google Scholar 

  • Sasaki T, Irie-Sasaki J, Jones RG, Oliveira dSA, Stanford WL, Bolon B, Wakeham A, Hie A, Bouchard D, Kozieradzki I, Joza N, Mak TW, Ohashi PS, Suzuki A, Penninger JM (2000) Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 287:1040–1046

    Article  PubMed  CAS  Google Scholar 

  • Schafer DA, Korshunova YO, Schroer TA, Cooper JA (1994) Differential localization and sequence analysis of capping protein beta-subunit isoforms of vertebrates. J Cell Biol 127:453–465

    Article  PubMed  CAS  Google Scholar 

  • Schafer DA, Jennings PB, Cooper JA (1996) Dynamics of capping protein and actin assembly in vitro: uncapping barbed ends by polyphosphoinositides. J Cell Biol 135:169–179

    Article  PubMed  CAS  Google Scholar 

  • Schluter K, Jockusch BM, Rothkegel M (1997) Profilins as regulators of actin dynamics. Biochim Biophys Acta 1359:97–109

    Article  PubMed  CAS  Google Scholar 

  • Schuebel KE, Movilla N, Rosa JL, Bustelo XR (1998) Phosphorylation-dependent and constitutive activation of Rho proteins by wild-type and oncogenic Vav-2. EMBO J 17:6608–6621

    Article  PubMed  CAS  Google Scholar 

  • Sellers JR (2000) Myosins: a diverse superfamily. Biochim Biophys Acta 1496:3–22

    Article  PubMed  CAS  Google Scholar 

  • Serunian LA, Auger KR, Roberts TM, Cantley LC (1990) Production of novel polyphosphoinositides in vivo is linked to cell transformation by polyomavirus middle Tantigen. J Virol 64:4718–4725

    PubMed  CAS  Google Scholar 

  • Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR (2000) Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287:1037–1040

    Article  PubMed  CAS  Google Scholar 

  • Shaw LM, Rabinovitz I, Wang HH, Toker A, Mercurio AM (1997) Activation of phosphoinositide 3-OH kinase by the alpha6beta4 integrin promotes carcinoma invasion. Cell 91:949–960

    Article  PubMed  CAS  Google Scholar 

  • Sheterline P, Clayton J, Sparrow J (1998) Actin. Protein Profile 4:1–119

    Google Scholar 

  • Shibasaki F, Fukami K, Fukui Y, Takenawa T (1994) Phosphatidylinositol 3-kinase binds to alpha-actinin through the p85 subunit. Biochem J 302:551–557

    PubMed  CAS  Google Scholar 

  • Shibasaki Y, Ishihara H, Kizuki N, Asano T, Oka Y, Yazaki Y (1997) Massive actin polymerization induced by phosphatidylinositol-4-phosphate 5-kinase in vivo. J Biol Chem 272:7578–7581

    Article  PubMed  CAS  Google Scholar 

  • Short DB, Trotter KW, Reczek D, Kreda SM, Bretscher A, Boucher RC, Stutts MJ, Milgram SL (1998) An apical PDZ protein anchors the cystic fibrosis transmembrane conductance regulator to the cytoskeleton. J Biol Chem 273:19797–19801

    Article  PubMed  CAS  Google Scholar 

  • Simson R, Wallraff E, Faix J, Niewohner J, Gerisch G, Sackmann E (1998) Membrane bending modulus and adhesion energy of wild-type and mutant cells of Dictyostelium lacking talin or cortexillins. Biophys J 74:514–522

    Article  PubMed  CAS  Google Scholar 

  • Singh SS, Chauhan A, Murakami N, Chauhan VP (1996) Profilin and gelsolin stimulate phosphatidylinositol 3-kinase activity. Biochem 35:16544–16549

    Article  CAS  Google Scholar 

  • Skare P, Karlsson R (2002) Evidence for two interaction regions for phosphatidylinositol(4,5)-bisphosphate on mammalian profilin I. FEBS Lett 522:119–124

    Article  PubMed  CAS  Google Scholar 

  • Snyder JT, Rossman KL, Baumeister MA, Pruitt WM, Siderowski DP, Der CJ, Lemmon MA, Sondek J (2001) Quantitative analysis of the effect of phosphoinositide interactions on the function of Dbl family proteins. J Biol Chem 276:45868–45875

    Article  PubMed  CAS  Google Scholar 

  • Southwick FS, DiNubile MJ (1986) Rabbit alveolar macrophages contain a Ca2+-sensitive, 41,000-dalton protein which rever.ubly blocks the “barbed” ends of actin filaments but does not sever them. J Biol Chem 261:14191–14195

    PubMed  CAS  Google Scholar 

  • Stauffer TP, Ahn S, Meyer T (1998) Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8:343–346

    Article  PubMed  CAS  Google Scholar 

  • Steimle PA, Hoffert JD, Adey NB, Craig SW (1999) Polyphosphoinositides inhibit the interaction of vinculin with actin filaments. J Biol Chem 274:18414–18420

    Article  PubMed  CAS  Google Scholar 

  • Stephens LR, Hughes KT, Irvine RF (1991) Pathway of phosphatidylinositol(3,4,5)-trisphosphate synthesis in activated neutrophils. Nature 351:33–39

    Article  PubMed  CAS  Google Scholar 

  • Stephens LR, Jackson TR, Hawkins PT (1993) Agonist-stimulated synthesis of phosphatidylinositol(3,4,5)-trisphosphate: a new intracellular signalling system? Biochim Biophys Acta 1179:27–75

    Article  PubMed  CAS  Google Scholar 

  • Stock A, Steinmetz MO, Janmey PA, Aebi D, Gerisch G, Kammerer RA, Weber I, Faix J (1999) Domain analysis of cortexillin I: actin-bundling, PIP2-binding and the rescue of cytokinesis. EMBO J 18:5274–5284

    Article  PubMed  CAS  Google Scholar 

  • Stossel TP, Condeelis J, Cooley L, Hartwig JH, Noegel A, Schleicher M, Shapiro SS (2001) Filamins as integrators of cell mechanics and signalling. Nat Rev Mol Cell Biol 2:138–145

    Article  PubMed  CAS  Google Scholar 

  • Sumi T, Matsumoto K, Shibuya A, Nakamura T (2001) Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase alpha. J Biol Chem 276:23092–23096

    Article  PubMed  CAS  Google Scholar 

  • Sun H, Lin K, Yin HL (1997) Gelsolin modulates phospholipase C activity in vivo through phospholipid binding. J Cell Biol 138:811–820

    Article  PubMed  CAS  Google Scholar 

  • Sun HQ, Kwiatkowska K, Wooten DC, Yin HL (1995) Effects of CapG overexpression on agonist-induced motility and second messenger generation. J Cell Biol 129:147–156

    Article  PubMed  CAS  Google Scholar 

  • Sun HQ, Yamamoto M, Mejillano M, Yin HL (1999) Gelsolin, a multifunctional actin regulatory protein. J Biol Chem 274:33179–33182

    Article  PubMed  CAS  Google Scholar 

  • Tall EG, Spector I, Pentyala SN, Bitter I, Rebecchi MJ (2000) Dynamics of phosphatidylinositol 4,5-bisphosphate in actin-rich structures. Curr Biol 10:743–746

    Article  PubMed  CAS  Google Scholar 

  • Tempel M, Goldmann WH, Dietrich C, Niggli V, Weber T, Sackmann E, Isenberg G (1994) Insertion of filamin into lipid membranes examined by calorimetry, the film balance technique, and lipid photolabeling. Biochem 33:12565–12572

    Article  CAS  Google Scholar 

  • Thomas CC, Dowler S, Deak M, Alessi DR, van Aalten DM (2001) Crystal structure of the phosphatidylinositol 3,4-bisphosphate-binding pleckstrin homology (PH) domain of tandem PH-domain-containing protein 1 (TAPP1): molecular basis of lipid specificity. Biochem J 358:287–294

    Article  PubMed  CAS  Google Scholar 

  • Thrasher AJ (2002) WASp in immune-system organization and function. Nat Rev Immunol 2:635–646

    Article  PubMed  CAS  Google Scholar 

  • Tolias K, Carpenter CL (2000) In vitro interaction of phosphoinositide-4-phosphate 5-kinases with Rac. Methods Enzymol 325:190–200

    Article  PubMed  CAS  Google Scholar 

  • Tolias KF, Hartwig JH, Ishihara H, Shibasaki Y, Cantley LC, Carpenter CL (2000) Type Ialpha phosphatidylinositol-4-phosphate 5-kinase mediates Rac-dependent actin assembly. Curr Biol 10:153–156

    Article  PubMed  CAS  Google Scholar 

  • Tuominen EK, Holopainen JM, Chen J, Prestwich GD, Bachiller PR, Kinnunen, PK, Janmey PA (1999) Fluorescent phosphoinositide derivatives reveal specific binding of gelsolin and other actin regulatory proteins to mixed lipid bilayers. Eur J Biochem 263:85–92

    Article  PubMed  CAS  Google Scholar 

  • Van Aelst L, D’Souza-Schorey C (1997) Rho GTPases and signaling networks. Genes Dev 11:2295–2322

    Article  PubMed  Google Scholar 

  • Van Aelst L, Joneson T, Bar-Sagi D (1996) Identification of a novel Rac1-interacting protein involved in membrane ruffling. EMBO J 15:3778–3786

    PubMed  Google Scholar 

  • van der Flier A, Sonnenberg A (2001) Structural and functional aspects of filamins. Biochim Biophys Acta 1538:99–117

    Article  PubMed  Google Scholar 

  • Van Rheenen J, Jalink K (2002) Agonist-induced PIP2 hydrolysis inhibits cortical actin dynamics: Regulation at a global but not at a micrometer scale. Mol Biol Cell 13:3257–3267

    Article  PubMed  CAS  Google Scholar 

  • Van Troys M, Dewitte D, Verschelde JL, Goethals M, Vandekerckhove J, Ampe C (2000) The competitive interaction of actin and PIP2 with actophorin is based on overlapping target sites: design of a gain-of-function mutant. Biochem 39:12181–12189

    Article  CAS  Google Scholar 

  • Vartiainen M, Ojala PJ, Auvinen P, Peranen J, Lappalainen P (2000) Mouse A6/twinfilin is an actin monomer-binding protein that localizes to the regions of rapid actin dynamics. Mol Cell Biol 20:1772–1783

    Article  PubMed  CAS  Google Scholar 

  • Varticovski L, Druker B, Morrison D, Cantley L, Roberts T (1989) The colony stimulating factor-1 receptor associates with and activates phosphatidylinositol-3 kinase. Nature 342:699–702

    Article  PubMed  CAS  Google Scholar 

  • Varticovski L, Daley GQ, Jackson P, Baltimore D, Cantley LC (1991) Activation of phosphatidylinositol 3-kinase in cells expressing ab1 oncogene variants. Mol Cell Biol 11:1107–1113

    PubMed  CAS  Google Scholar 

  • Volberg T, Geiger B, Kam Z, Pankov R, Simcha I, Sabanay H, Coll JL, Adamson E, Ben-Ze’ev A (1995) Focal adhesion formation by F9 embryonal carcinoma cells after vinculin gene disruption. J Cell Sci 108:2253–2260

    PubMed  CAS  Google Scholar 

  • Wahlström G, Vartiainen M, Yamamoto L, Mattila PK, Lappalainen P, Heino TI (2001) Twinfilin is required for actin-dependent developmental processes in Drosophila. J Cell Biol 155:787–796

    Article  PubMed  Google Scholar 

  • Wang J, Arbuzova A, Hangyas-Mihalyne G, McLaughlin S (2001) The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-bisphosphate. J Biol Chem 276:5012–5019

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Madaule P, Reid T, Ishizaki T, Watanabe G, Kakizuka A, Saito Y, Nakao K, Jockusch BM, Narumiya S (1997) p140mDia, a mammalian homolog of Drosophila diaphanous, is a target protein for Rho small GTPase and is a ligand for profilin. EMBO J 16:3044–3056

    Article  PubMed  CAS  Google Scholar 

  • Watt SA, Kular G, Fleming IN, Downes CP, Lucocq JM (2002) Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C delta1. Biochem J 363:657–666

    Article  PubMed  CAS  Google Scholar 

  • Weber I, Gerisch G, Heizer C, Murphy J, Badelt K, Stock A, Schwartz JM, Faix J (1999) Cytokinesis mediated through the recruitment of cortexillins into the cleavage furrow. EMBO J 18:586–594

    Article  PubMed  CAS  Google Scholar 

  • Weed SA, Parsons JT (2001) Cortactin: coupling membrane dynamics to cortical actin assembly. Oncogene 20:6418–6434

    Article  PubMed  CAS  Google Scholar 

  • Weeds A, Maciver S (1993) F-actin capping proteins. Curr Opin Cell Biol 5:63–69

    Article  PubMed  CAS  Google Scholar 

  • Welch MD, Mullins RD (2002) Cellular control of actin nucleation. Annu Rev Cell Dev Biol 18:247–288

    Article  PubMed  CAS  Google Scholar 

  • Wennström S, Hawkins P, Cooke F, Hara K, Yonezawa K, Kasuga M, Jackson T, Claesson-Welsh L, Stephens L (1994a) Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr Biol 4:385–393

    Article  PubMed  Google Scholar 

  • Wennström S, Siegbahn A, Yokote K, Arvidsson AK, Heldin CH, Mori S, Claesson-Welsh L (1994b) Membrane ruffling and chemotaxis transduced by the PDGF beta-receptor require the binding site for phosphatidylinositol 3′ kinase. Oncogene 9:651–660

    PubMed  Google Scholar 

  • Wymann M, Arcaro A (1994) Platelet-derived growth factor-induced phosphatidylinositol 3-kinase activation mediates actin rearrangements in fibroblasts. Biochem J 298:517–520

    PubMed  CAS  Google Scholar 

  • Xian W, Janmey PA (2002) Dissecting the gelsolin-polyphosphoinositide interaction and engineering of a polyphosphoinositide-sensitive gelsolin C-terminal half protein. J Mol Biol 322:755

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto M, Hilgemann DH, Feng S, Bito H, Ishihara H, Shibasaki Y, Yin HL (2001) Phosphatidylinositol 4,5-bisphosphate induces actin stress-fiber formation and inhibits membrane ruffling in CV1 cells. J Cell Biol 152:867–876

    Article  PubMed  CAS  Google Scholar 

  • Yonemura S, Matsui T, Tsukita S (2002) Rho-dependent and-independent activation mechanisms of ezrin/radixin/moesin proteins: an essential role for polyphosphoinositides in vivo. J Cell Sci 115:2569–2580

    PubMed  CAS  Google Scholar 

  • Yonezawa N, Nishida E, Iida K, Yahara I, Sakai H (1990) Inhibition of the interactions of cofilin, destrin, and deoxyribonuclease I with actin by phosphoinositides. J Biol Chem 265:8382–8386

    PubMed  CAS  Google Scholar 

  • Young P, Gautel M (2000) The interaction of titin and alpha-actinin is controlled by a phospholipid-regulated intramolecular pseudoligand mechanism. EMBO J 19:6331–6340

    Article  PubMed  CAS  Google Scholar 

  • Yu FX, Sun HQ, Janmey PA, Yin HL (1992) Identification of a polyphosphoinositide-binding sequence in an actin monomer-binding domain of gelsolin. J Biol Chem 267:14616–14621

    PubMed  CAS  Google Scholar 

  • Yun CH, Lamprecht G, Forster DV, Sidor A (1998) NHE3 kinase A regulatory protein E3KARP binds the epithelial brush border Na+/H+ exchanger NHE3 and the cytoskeletal protein ezrin. J Biol Chem 273:25856–25863

    Article  PubMed  CAS  Google Scholar 

  • Zeng L, Sachdev P, Yan L, Chan JL, Trenkle T, McClelland M, Welsh J, Wang LH (2000) Vav3 mediates receptor protein tyrosine kinase signaling, regulates GTPase activity, modulates cell morphology, and induces cell transformation. Mol Cell Biol 20:9212–9224

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hilpelä, P., Vartiainen, M.K., Lappalainen, P. (2004). Regulation of the Actin Cytoskeleton by PI(4,5)P2 and PI(3,4,5)P3 . In: Stenmark, H. (eds) Phosphoinositides in Subcellular Targeting and Enzyme Activation. Current Topics in Microbiology and Immunology, vol 282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18805-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18805-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62299-1

  • Online ISBN: 978-3-642-18805-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics