Skip to main content
Book cover

TOR pp 53–72Cite as

Nutrient Signaling Through TOR Kinases Controls Gene Expression and Cellular Differentiation in Fungi

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 279))

Abstract

The TOR kinases were first identified in Saccharomyces cerevisiae as the targets of the immunosuppressive drug rapamycin. Subsequent studies employing rapamycin as a tool in yeast have given us insight into the structure and function of the TOR kinases, as well as the biological role of the TOR signaling program in transmitting nutrient signals to promote cell growth. One of the major advances from this area has been in defining an unexpected role for TOR signaling in the regulation of transcription. The identification of target genes subject to regulation by TOR has provided a platform for the dissection of the signaling events downstream of the TOR kinases. Studies aimed at understanding TOR-regulated transcription have begun to shed light on how TOR signaling cooperates with other signaling programs. In addition, the TOR pathway regulates the developmental program of pseudohyphal differentiation in concert with highly conserved MAP kinase and PKA signaling programs. Remarkably, rapamycin also blocks filamentation in a number of important human and plant pathogens and the mechanism of rapamycin action is conserved in Candida albicans and Cryptococcus neoformans. The antimicrobial properties of less immunosuppressive analogs of rapamycin hold promise for the development of an effective antifungal therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alarcon, CM., M.E. Cardenas, and J. Heitman. 1996. Mammalian RAFT1 kinase domain provides rapamycin-sensitive TOR function in yeast Genes Dev. 10: 279–288

    Article  PubMed  CAS  Google Scholar 

  • Alarcon, CM., J. Heitman, and M.E. Cardenas. 1999. Protein kinase activity and identification of a toxic effector domain of the target of rapamycin TOR proteins in yeast Mol. Biol. Cell. 10: 2531–2546

    CAS  Google Scholar 

  • Andrade, M.A., C Petosa, S.I. O’Donoghue, C.W. Muller, and P. Bork. 2001. Comparison of ARM and HEAT protein repeats J. Mol. Bio.l 309: 1–18

    Google Scholar 

  • Barbet, N.C, U. Schneider, S.B. Helliwell, I. Stansfield, M.E Tuite, and M.N. Hall. 1996. TOR controls translation initiation and early Gl progression in yeast Mol. Biol. Cell 7: 25–42

    CAS  Google Scholar 

  • Beck, T. and M.N. Hall. 1999. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors Nature 402: 689–92

    Article  PubMed  CAS  Google Scholar 

  • Bertram, P.G., J.H. Choi, J. Carvalho, W. Ai, C Zeng, T.F. Chan, and X.F. Zheng. 2000. Tripartite regulation of Gln3p by TOR, Ure2p and phosphatases J. Biol. Chem. 275: 35727–35733

    Article  CAS  Google Scholar 

  • Bertram, P.G., J.H. Choi, J. Carvalho, T.F. Chan, W Ai, and X.F. Zheng. 2002. Convergence of TOR-nitrogen and Snf1-glucose signaling pathways onto Gln3 Mo.l Cell. Biol. 22: 1246–52

    CAS  Google Scholar 

  • Blinder, D., P.W. Coschigano, and B. Magasanik. 1996. Interaction of the GATA factor Gln3p with the nitrogen regulator Ure2p in Saccharomyces cerevisiae J. Bacteriol 178: 4734–4736

    CAS  Google Scholar 

  • Brown, E.J., M.W. Albers, T.B. Shin, K. Ichikawa, CT. Keith, W.S. Lane, and S.L. Schreiber. 1994. A mammalian protein targeted by G1-arresting rapamycin-recep-tor complex Nature 369: 756–759

    Article  PubMed  CAS  Google Scholar 

  • Brunn, G.J., P. Fadden, T.A.J. Haystead, and J. J.C Lawrence. 1997. The mammalian target of rapamycin phosphorylates sites having a (Ser/Thr)-pro motif and is activated by antibodies to a region near its COOH terminus J. Biol. Chem. 272: 32547–32550

    Article  CAS  Google Scholar 

  • Cafferkey, R., P.R. Young, M.M. McLaughlin, D.J. Bergsma, Y. Koltin, G.M. Sathe, L. Faucette, W.-K. Eng, R.K. Johnson, and G.P. Livi. 1993. Dominant missense muta tions in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity Mol. Cell. Biol. 13: 6012–6023

    CAS  Google Scholar 

  • Cardenas, M.E., N.S. Cutler, M.C. Lorenz, C.J.D. Como, and J. Heitman. 1999. The TOR signaling cascade regulates gene expression in response to nutrients Genes &Dev. 13: 3271–3279

    Article  CAS  Google Scholar 

  • Cardenas, M.E. and J. Heitman. 1995. FKBP12-rapamycin target TOR2 is a vacuolar protein with an associated phosphatidylinositol-4 kinase activity EMBO J. 14: 5892–5907

    PubMed  CAS  Google Scholar 

  • Carvalho, J., P.G. Bertram, S.R. Wente, and X.F.S. Zheng. 2001. Phosphorylation Regulates the Interaction between Gln3p and the Nuclear Import Factor Srp1p* J. Biol. Chem. 276: 25359–25365

    Article  CAS  Google Scholar 

  • Chan, T.-E, J. Carvalho, L. Riles, and X.E Zheng. 2000. A chemical genomics approach toward understanding the global functions of the target of rapamycin protein (TOR) Proc. Natl. Acad. Sci., USA 97: 13227–13232

    Article  PubMed  CAS  Google Scholar 

  • Chen, J., X.-F. Zheng, E.J. Brown, and S.L. Schreiber. 1995. Identification of an 11-kDa FKBP12-rapamycin-binding domain within the 289-kDa FKBP12-rapamycin-associated protein and characterization of a critical serine residue Proc. Natl. Acad. Sci., USA 92: 4947–4951

    Article  PubMed  CAS  Google Scholar 

  • Choi, J., J. Chen, S.L. Schreiber, and J. Clardy. 1996. Structure of the FKBP12-ra-pamycin complex interacting with the binding domain of human FRAP Science 273: 239–242

    Google Scholar 

  • Christie, G.R., E. Hajduch, HS. Hundal, C.G. Proud, and P.M. Taylor. 2002. Intracellular sensing of amino acids in Xenopus leavis oocytes stimulates p70 S6 kinase in a TOR-dependent manner J. Biol. Chem. 277:9952–9957

    Article  CAS  Google Scholar 

  • Coschigano, P.W. and B. Magasanik. 1991. The URE2 gene product of Saccharomyces cerevisiae plays an important role in the cellular response to the nitrogen source and has homology to gluthathione S-transferases Mol. Cell. Biol. 11: 822–832

    CAS  Google Scholar 

  • Courchesne, W.E. and B. Magasanik. 1988. Regulation of nitrogen assimilation in Saccharomyces cerevisiae: roles of the URE2 and GLN3 genes J. Bacteriol 170: 708–713

    CAS  Google Scholar 

  • Crespo, J.L., K. Daicho, T. Ushimaru, and M.N. Hall. 2001. The GATA transcription factors GLN3 and GAT1 link TOR to salt stress in Saccharomyces cerevisiae J. Biol. Chem. 276: 34441–34444

    Article  CAS  Google Scholar 

  • Cruz, M.C, L.M. Cavallo, J.M. Gorlach, G. Cox, J.R. Perfect, M.E. Cardenas, and J. Heitman. 1999. Rapamycin antifungal action is mediated via conserved complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans Mol. Cell. Biol. 19:4101–4112

    CAS  Google Scholar 

  • Cruz, M.C, A.L. Goldstein, J. Blankenship, M.D. Poeta, J.R. Perfect, J.H. McCusker, Y.L. Bennani, M.E. Cardenas, and J. Heitman. 2001. Rapamycin and less immunosuppressive analogs are toxic to Candida albicans and Cryptococcus neoformans via FKBP12 dependent inhibition TOR Antimicrob. Agents Chemother. 45: 3162–3170

    Article  CAS  Google Scholar 

  • Cutler, N.S., J. Heitman, and M.E. Cardenas. 1999. TOR kinase homologs function in a signal transduction pathway that is conserved from yeast to mammals Mol. Cell. Endocrinol. 155: 135–142

    Article  CAS  Google Scholar 

  • Cutler, N.S., X. Pan, J. Heitman, and M.E. Cardenas. 2001. The TOR signal transduction cascade controls cellular differentiation in response to nutrients Mol. Biol. Cell 12:4103–4113

    CAS  Google Scholar 

  • Dennis, P.B., A. Jaeschke, M. Saitoh, B. Fowler, S.C. Kozma, and G. Thomas. 2001. Mammalian TOR: a homeostatic ATP sensor Science 294: 1102–1105

    Article  PubMed  CAS  Google Scholar 

  • Di Como, C.J. and K.T. Arndt. 1996. Nutrients, via the Tor proteins, stimulate the association of Tap42 with type 2A phosphatases Genes & Dev. 10: 1904–1916

    Google Scholar 

  • Fang, Y., M. Vilella-Bach, R. Bachmann, A. Flanigan, and J. Chen. 2001. Phosphatidic acid-mediated mitogenic activation of mTOR signaling Science 294: 1942–1945

    Article  PubMed  CAS  Google Scholar 

  • Ferrara, A., R. Cafferkey, and G.P. Livi. 1992. Cloning and sequence analysis of a ra-pamycin-binding protein-encoding gene (RBP1) from Candida albicans Gene 113: 125–127

    Google Scholar 

  • Gimeno, C.J., P.O. Ljungdahl, C.A. Styles, and G.R. Fink. 1992. Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS Cell 68: 1077–1090

    Article  PubMed  CAS  Google Scholar 

  • Gorner, W., E. Durchschlag, J. Wolf, E.L. Brown, G. Ammerer, H. Ruis, and C. Schul-ler. 2002. Acute glucose starvation activates the nuclear localization signal of a stress-specific yeast transcription factor EMBO J. 21: 135–44

    Article  PubMed  CAS  Google Scholar 

  • Hardwick, J.S., EG. Kuruvilla, J.K. Tong, A.F. Shamji, and S.L. Schreiber. 1999. Ra-pamycin-modulated transcription defines the subset of nutrient-sensitive signaling pathways directly controlled by the Tor proteins Proc. Natl. Acad. Sci., USA 96:14866–70

    Article  PubMed  CAS  Google Scholar 

  • Hartman, M.E., M. Villela-Bach, J. Chen, and G.G. Freund. 2001. Frap-dependent serine phosphorylation of IRS-1 inhibits IRS-1 tyrosine phosphorylation Biochem. Biophys. Res. Commun. 280: 776–81

    Article  CAS  Google Scholar 

  • Heitman, J., N.R. Mowa, and M.N. Hall. 1991a. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast Science 253: 905–909

    Article  PubMed  CAS  Google Scholar 

  • Heitman, J., N.R. Mowa, P.C. Hiestand, and M.N. Hall. 1991b. FK 506-binding protein proline rotamase is a target for the immunosuppressive agent FK 506 in Saccharomyces cerevisiae Proc. Natl. Acad. Sci. U S A 88: 1948–52

    Article  CAS  Google Scholar 

  • Helliwell, S.B., P. Wagner, J. Kunz, M. Deuter-Reinhard, R. Henriquez, and M.N. Hall. 1994. Tor1 and Tor2 are structurally and functionally similar but not identical phosphatidylinositol kinase homologues in yeast Mol. Biol. Cell 5: 105–118

    CAS  Google Scholar 

  • Jacinto, E., B. Guo, K.T. Arndt, T. Schmelzle, and M.N. Hall. 2001. TIP41 Interacts with TAP42 and negatively regulates the TOR signaling pathway Molecular Cell 8: 1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y. and J.R. Broach. 1999. Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast EMBO J. 18: 2782–2792

    Article  PubMed  CAS  Google Scholar 

  • Komeili, A., K.P. Wedaman, E.K. O’Shea, and T. Powers. 2000. Mechanism of metabolic control: target of rapamycin signaling links nitrogen quality to the activity of the Rtg1 and Rtg3 transcription factors J. Cell Biol. 151: 863–878

    Article  CAS  Google Scholar 

  • Kunz, J., R. Henriquez, U. Schneider, M. Deuter-Reinhard, N.R. Mowa, and M.N. Hall. 1993. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression Cell 73: 585–596

    Article  PubMed  CAS  Google Scholar 

  • Kunz, J., U. Schneider, I. Howald, A. Schmidt, and M.N. Hall. 2000. HEAT repeats mediate plasma membrane localization of Tor2p in yeast J. Biol. Chem. 275: 37011–20

    Article  CAS  Google Scholar 

  • Lengeler, K.B., R.C. Davidson, C. D’Souza, T.Harashima, W.-C. Shen, R Wang, X. Pan, M. Waugh, and J. Heitman. 2000. Signal transduction cascades regulating fungal development and virulence Microbiol. Mol. Biol. Rev. 64: 746–785

    Article  CAS  Google Scholar 

  • Lo, H.-J., J.R. Kohler, B. DiDomenico, D. Loebenberg, A. Cacciapuoti, and G.R. Fink. 1997. Nonfilamentous C. albicans mutants are avirulent Cell 90: 939–949

    Article  PubMed  CAS  Google Scholar 

  • Lorenz, M.C. and J. Heitman. 1995. TOR mutations confer rapamycin resistance by preventing interaction with FKBP12-rapamycin J. Biol. Chem. 270: 27531–27537

    Article  CAS  Google Scholar 

  • Lorenz, M.C. and J. Heitman. 1998. The MEP2 ammonium permease regulates pseudohyphal differentiation in Saccharomyces cerevisiae EMBO J. 17: 1236–1247

    Article  PubMed  CAS  Google Scholar 

  • Luke, M.M., ED. Seta, C.J.D. Como, H. Sugimoto, R. Kobayashi, and K.T. Arndt. 1996. The SAPs, a new family of proteins, associate and function positively with the SIT4 phosphatase. Mol. Cell. Biol. 16: 2744–2755

    PubMed  CAS  Google Scholar 

  • Noda, T. and Y. Ohsumi. 1998. TOR, a phosphatidylinositol kinase homologue, controls autophagy in yeast J. Biol. Chem. 273: 3963–3966

    Article  CAS  Google Scholar 

  • Oldham, S., J. Montagne, T. Radimerski, G. Thomas, and E. Hafen. 2000. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin Genes Dev. 14: 2689–2694

    Article  PubMed  CAS  Google Scholar 

  • Pan, X., T.Harashima, and J. Heitman. 2000. Signal transduction cascades regulating pseudohyphal differentiation of Saccharomyces cerevisiae Curr. Opin. Microbiol. 3: 567–572

    Article  CAS  Google Scholar 

  • Peterson, R.T, P.A. Beal, M.J. Comb, and S.L. Schreiber. 2000. FKBP12-rapamycin-associated protein (FRAP) autophosphorylates at serine 2481 under translationally repressive conditions J. Biol. Chem. 275: 7416–23

    Article  CAS  Google Scholar 

  • Powers, T. and P. Walter. 1999. Regulation of ribosome biogenesis by the rapamycin-sensitive TOR-signaling pathway in Saccharomyces cerevisiae Mol. Biol. Cell 10: 987–1000

    CAS  Google Scholar 

  • Rohde, J., J. Heitman, and M.E. Cardenas. 2001. The Tor kinases link nutrient sensing to cell growth J. Biol. Chem. 276: 9583–9586

    Article  CAS  Google Scholar 

  • Sabatini, D.M., H. Erdjument-Bromage, M. Lui, P. Tempst, and S.H. Snyder. 1994. RAFT1: A mammalian protein that binds to FKBP12 in a rapamycin-dependent fashion and is homologous to yeast TORs Cell 78: 35–43

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, A., T. Beck, A. Roller, J. Kunz, and M.N. Hall. 1998. The TOR nutrient signalling pathway phosphorylates NPR1 and inhibits turnover of the tryptophan permease EMBO J. 17: 6924–6931

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, A. J. Kunz, and M.N. Hall. 1996. TOR2 is required for organization of the actin cytoskeleton in yeast Proc. Natl. Acad. Sci., USA 93: 13780–13785

    Article  CAS  Google Scholar 

  • Stan, R., M.M. McLaughlin, R.T. Cafferkey, R.K. Johnson, M. Rosenberg, and G.P. Livi. 1994. Interaction between FKBP12-Rapamycin and TOR involves a conserved serine residue J. Biol. Chem. 269: 32027–32030

    CAS  Google Scholar 

  • Stanbrough, M., D.W. Rowen, and B. Magasanik. 1995. Role of the GATA factors Gln3p and Nillp of Saccharomyces cerevisiae in the expression of nitrogen-regulated genes Proc. Natl. Acad. Sci. USA 92: 9450–9454

    Article  CAS  Google Scholar 

  • van Zyl, W., W. Huang, A.A. Sneddon, M. Stark, S. Camier, M. Werner, C. Marck, A. Sentenac, and J.R. Broach. 1992. Inactivation of the protein phosphatase 2A regulatory subunit A results in morphological and transcriptional defects in Saccharomyces cerevisiae Mol. Cell. Biol. 12: 4946–59

    Google Scholar 

  • Vezina, C, A. Kudelski, and S.N. Sehgal. 1975. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing Streptomycete and isolation of the active principle. J. Antibiot. 28: 721–726

    Article  PubMed  CAS  Google Scholar 

  • Werner-Washburne, M., E. Braun, G.C. Johnston, and R.A. Singer. 1993. Stationary phase in the yeast Saccharomyces cerevisiae Microbiol. Rev. 57: 383–401

    CAS  Google Scholar 

  • White, T.C., K.A. Marr, and R.A. Bowden. 1998. Clinical, cellular, and molecular factors that contribute to antifungal drug resistance. Clin. Microbiol. Rev. 11: 382–402

    PubMed  CAS  Google Scholar 

  • Xu, S., D.A. Falvey, and M.C. Brandriss. 1995. Roles of URE2 and GLN3 in the proline utilization pathway in Saccharomyces cerevisiae Mol. Cell. Biol. 15: 2321–2330

    CAS  Google Scholar 

  • Zaragoza, D., A. Ghavidel, J. Heitman, and M.C. Schultz. 1998. Rapamycin induces the G0 program of transcriptional repression in yeast by interfering with the TOR signaling pathway Mol. Cell. Biol. 18: 4463–4470

    CAS  Google Scholar 

  • Zheng, X.-E, D. Fiorentino, J. Chen, G.R. Crabtree, and S.L. Schreiber. 1995. TOR kinase domains are required for two distinct functions, only one of which is inhibited by rapamycin Cell 82: 121–130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rohde, J.R., Cardenas, M.E. (2004). Nutrient Signaling Through TOR Kinases Controls Gene Expression and Cellular Differentiation in Fungi. In: Thomas, G., Sabatini, D.M., Hall, M.N. (eds) TOR. Current Topics in Microbiology and Immunology, vol 279. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18930-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18930-2_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62360-8

  • Online ISBN: 978-3-642-18930-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics