Skip to main content

Cell-Size-Dependent Control of Organelle Sizes During Development

  • Chapter
  • First Online:

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS))

Abstract

During development, cells differentiate into diverse cell types with different sizes. The size of intracellular organelles often correlates with the size of the cell, which may be important for cell homeostasis. The nucleus is a well-known example of an organelle whose size correlates with cell size. However, the mechanical basis of the correlation is unknown. The lengths of the mitotic spindle and contractile ring are emerging as model system to investigate the cell-size-dependent control mechanisms of organelle size. Mechanistic models are proposed for the cell-size-dependent control of these organelles. Understanding the cell-size dependency of organelle sizes is expected to impact not only on the morphogenesis of the individual organelle, but also on cell homeostasis, cell cycle progression, and cell differentiation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altman PL, Katz DD (1976) Cell biology. Federation of American Societies for Experimental Biology, Bethesda, MD

    Google Scholar 

  • Bastiaens P, Caudron M, Niethammer P, Karsenti E (2006) Gradients in the self-organization of the mitotic spindle. Trends Cell Biol 16:125–134

    Article  CAS  PubMed  Google Scholar 

  • Bringmann H, Cowan CR, Kong J, Hyman AA (2007) LET-99, GOA-1/GPA-16, and GPR-1/2 are required for aster-positioned cytokinesis. Curr Biol 17:185–191

    Article  CAS  PubMed  Google Scholar 

  • Brown KS, Blower MD, Maresca TJ, Grammer TC, Harland RM, Heald R (2007) Xenopus tropicalis egg extracts provide insight into scaling of the mitotic spindle. J Cell Biol 176:765–770

    Article  CAS  PubMed  Google Scholar 

  • Carvalho A, Desai A, Oegema K (2009) Structural memory in the contractile ring makes the duration of cytokinesis independent of cell size. Cell 137:926–937

    Article  CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1978) Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox. J Cell Sci 34:247–278

    CAS  PubMed  Google Scholar 

  • Cavalier-Smith T (1982) Skeletal DNA and the evolution of genome size. Annu Rev Biophys Bioeng 11:273–302

    Article  CAS  PubMed  Google Scholar 

  • Colombo K, Grill SW, Kimple RJ, Willard FS, Siderovski DP, Gönczy P (2003) Translation of polarity cues into asymmetric spindle positioning in Caenorhabditis elegans embryos. Science 300:1957–1961

    Article  CAS  PubMed  Google Scholar 

  • Conklin EG (1912) Cell size and nuclear size. J Exp Zol 1:1–98

    Article  Google Scholar 

  • Conlon I, Raff M (1999) Size control in animal development. Cell 96:235–244

    Article  CAS  PubMed  Google Scholar 

  • Conlon IJ, Dunn GA, Mudge AW, Raff MC (2001) Extracellular control of cell size. Nat Cell Biol 3:918–921

    Article  CAS  PubMed  Google Scholar 

  • Dechant R, Glotzer M (2003) Centrosome separation and central spindle assembly act in redundant pathways that regulate microtubule density and trigger cleavage furrow formation. Dev Cell 4:333–344

    Article  CAS  PubMed  Google Scholar 

  • Dinarina A, Pugieux C, Corral MM, Loose M, Spatz J, Karsenti E, Nédélec F (2009) Chromatin shapes the mitotic spindle. Cell 138:502–513

    Article  CAS  PubMed  Google Scholar 

  • Dumont S, Mitchison TJ (2009) Force and length in the mitotic spindle. Curr Biol 19:R749–R761

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edgar BA, Kiehle CP, Schubiger G (1986) Cell cycle control by the nucleo-cytoplasmic ratio in early Drosophila development. Cell 44:365–372

    Article  CAS  PubMed  Google Scholar 

  • Edgar BA, Orr-Weaver TL (2001) Endoreplication cell cycles: more for less. Cell 105:297–306

    Article  CAS  PubMed  Google Scholar 

  • Frankhauser G (1945) Maintenance of normal structure in heteroploid salamander larvae through compensation of changes in cell size by adjustment of cell number and cell shape. J Exp Zool 100:445–455

    Article  Google Scholar 

  • Goshima G, Kimura A (2010) New look inside the spindle: microtubule-dependent microtubule generation within the spindle. Curr Opin Cell Biol 22:44–49

    Article  CAS  PubMed  Google Scholar 

  • Goshima G, Wollman R, Stuurman N, Scholey JM, Vale RD (2005) Length control of the metaphase spindle. Curr Biol 15:1979–1988

    Article  CAS  PubMed  Google Scholar 

  • Gotta M, Ahringer J (2001) Distinct roles for Galpha and Gbetagamma in regulating spindle position and orientation in Caenorhabditis elegans embryos. Nat Cell Biol 3:297–300

    Article  CAS  PubMed  Google Scholar 

  • Gotta M, Dong Y, Peterson YK, Lanier SM, Ahringer J (2003) Asymmetrically distributed C. elegans homologs of AGS3/PINS control spindle position in the early embryo. Curr Biol 13:1029–1037

    Article  CAS  PubMed  Google Scholar 

  • Greenan G, Brangwynne CP, Jaensch S, Gharakhani J, Jülicher F, Hyman AA (2010) Centrosome size sets mitotic spindle length in Caenorhabditis elegans embryos. Curr Biol 20:353–358

    Article  CAS  PubMed  Google Scholar 

  • Gregory TR (2001) The bigger the C-value, the larger the cell: genome size and red blood cell size in vertebrates. Blood Cells Mol Dis 27:830–843

    Article  CAS  PubMed  Google Scholar 

  • Grill SW, Howard J, Schaffer E, Stelzer EH, Hyman AA (2003) The distribution of active force generators controls mitotic spindle position. Science 301:518–521

    Article  CAS  PubMed  Google Scholar 

  • Grill SW, Hyman AA (2005) Spindle positioning by cortical pulling forces. Dev Cell 8:461–465

    Article  CAS  PubMed  Google Scholar 

  • Guo Y, Walther TC, Rao M, Stuurman N, Goshima G, Terayama K, Wong JS, Vale RD, Walter P, Farese RV (2008) Functional genomic screen reveals genes involved in lipid-droplet formation and utilization. Nature 453:657–661

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hara Y, Kimura A (2009) Cell-size-dependent spindle elongation in the Caenorhabditis elegans early embryo. Curr Biol 19:1549–1554

    Article  CAS  PubMed  Google Scholar 

  • Henery CC, Bard JB, Kaufman MH (1992) Tetraploidy in mice, embryonic cell number, and the grain of the developmental map. Dev Biol 152:233–241

    Article  CAS  PubMed  Google Scholar 

  • Henery CC, Kaufman MH (1992) Relationship between cell size and nuclear volume in nucleated red blood cells of developmentally matched diploid and tetraploid mouse embryos. J Exp Zool 261:472–478

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen P, Edgington NP, Schneider BL, Rupes I, Tyers M, Futcher B (2007) The size of the nucleus increases as yeast cells grow. Mol Biol Cell 18:3523–3532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jorgensen P, Tyers M (2004) How cells coordinate growth and division. Curr Biol 14:R1014–R1027

    Article  CAS  PubMed  Google Scholar 

  • Jovtchev G, Schubert V, Meister A, Barow M, Schubert I (2006) Nuclear DNA content and nuclear and cell volume are positively correlated in angiosperms. Cytogenet Genome Res 114:77–82

    Article  CAS  PubMed  Google Scholar 

  • Kalab P, Šolc P, Motlík J (2011) The role of RanGTP gradient in vertebrate oocyte maturation. In: Kubiak JZ (ed) Cell cycle in development. Results and problems in cell differentiation, vol 53. Springer, Heidelberg

    Google Scholar 

  • Kalab P, Heald R (2008) The RanGTP gradient – a GPS for the mitotic spindle. J Cell Sci 121:1577–1586

    Article  CAS  PubMed  Google Scholar 

  • Katsura I (1990) Mechanism of length determination in bacteriophage lambda tails. Adv Biophys 26:1–18

    Article  CAS  PubMed  Google Scholar 

  • Katsura I, Hendrix RW (1984) Length determination in bacteriophage lambda tails. Cell 39:691–698

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Li Q, Dang CV, Lee LA (2000) Induction of ribosomal genes and hepatocyte hypertrophy by adenovirus-mediated expression of c-Myc in vivo. Proc Natl Acad Sci USA 97:11198–11202

    Article  CAS  PubMed  Google Scholar 

  • Kobayakawa Y, Kubota HY (1981) Temporal pattern of cleavage and the onset of gastrulation in amphibian embryos developed from eggs with the reduced cytoplasm. J Embryol Exp Morphol 62:83–94

    CAS  PubMed  Google Scholar 

  • Kubiak JZ, Weber M, Géraud G, Maro B (1992) Cell cycle modification during the transitions between meiotic M-phases in mouse oocytes. J Cell Sci 102(Pt 3):457–467

    CAS  PubMed  Google Scholar 

  • Lu X, Li JM, Elemento O, Tavazoie S, Wieschaus EF (2009) Coupling of zygotic transcription to mitotic control at the Drosophila mid-blastula transition. Development 136:2101–2110

    Article  CAS  PubMed  Google Scholar 

  • Marshall WF (2004) Cellular length control systems. Annu Rev Cell Dev Biol 20:677–693

    Article  CAS  PubMed  Google Scholar 

  • Martin SG, Berthelot-Grosjean M (2009) Polar gradients of the DYRK-family kinase Pom1 couple cell length with the cell cycle. Nature 459:852–856

    Article  CAS  PubMed  Google Scholar 

  • Mita I (1983) Studies on factors affecting the timing of early morphogenetic events during starfish embryogenesis. J Exp Zool 225:293–299

    Article  Google Scholar 

  • Mita I, Obata C (1984) Timing of early morphogenetic events in tetraploid starfish embryos. J Exp Zool 229:215–222

    Article  Google Scholar 

  • Mitchison TJ, Maddox P, Gaetz J, Groen A, Shirasu M, Desai A, Salmon ED, Kapoor TM (2005) Roles of polymerization dynamics, opposed motors, and a tensile element in governing the length of Xenopus extract meiotic spindles. Mol Biol Cell 16:3064–3076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mogilner A, Wollman R, Civelekoglu-Scholey G, Scholey J (2006) Modeling mitosis. Trends Cell Biol 16:88–96

    Article  CAS  PubMed  Google Scholar 

  • Moseley JB, Mayeux A, Paoletti A, Nurse P (2009) A spatial gradient coordinates cell size and mitotic entry in fission yeast. Nature 459:857–860

    Article  CAS  PubMed  Google Scholar 

  • Neumann FR, Nurse P (2007) Nuclear size control in fission yeast. J Cell Biol 179:593–600

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982a) A major developmental transition in early Xenopus embryos: I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686

    Article  CAS  PubMed  Google Scholar 

  • Newport J, Kirschner M (1982b) A major developmental transition in early Xenopus embryos: II. Control of the onset of transcription. Cell 30:687–696

    Article  CAS  PubMed  Google Scholar 

  • Organ CL, Shedlock AM, Meade A, Pagel M, Edwards SV (2007) Origin of avian genome size and structure in non-avian dinosaurs. Nature 446:180–184

    Article  CAS  PubMed  Google Scholar 

  • Prioleau MN, Huet J, Sentenac A, Méchali M (1994) Competition between chromatin and transcription complex assembly regulates gene expression during early development. Cell 77:439–449

    Article  CAS  PubMed  Google Scholar 

  • Rafelski SM, Marshall WF (2008) Building the cell: design principles of cellular architecture. Nat Rev Mol Cell Biol 9:593–602

    Article  CAS  PubMed  Google Scholar 

  • Roth G, Blanke J, Wake DB (1994) Cell size predicts morphological complexity in the brains of frogs and salamanders. Proc Natl Acad Sci USA 91:4796–4800

    Article  CAS  PubMed  Google Scholar 

  • Saucedo LJ, Edgar BA (2002) Why size matters: altering cell size. Curr Opin Genet Dev 12:565–571

    Article  CAS  PubMed  Google Scholar 

  • Schmidt EE, Schibler U (1995) Cell size regulation, a mechanism that controls cellular RNA accumulation: consequences on regulation of the ubiquitous transcription factors Oct1 and NF-Y and the liver-enriched transcription factor DBP. J Cell Biol 128:467–483

    Article  CAS  PubMed  Google Scholar 

  • Seyfert HM, Hipke H, Schmidt W (1984) Isolation and phenotypic characterization of Tetrahymena thermophila size mutants: the relationship between cell size and regulation of DNA content. J Cell Sci 67:203–215

    CAS  PubMed  Google Scholar 

  • Solovei I, Kreysing M, Lanctot C, Kosem S, Peichl L, Cremer T, Guck J, Joffe B (2009) Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137:356–368

    Article  CAS  PubMed  Google Scholar 

  • Stocker H, Hafen E (2000) Genetic control of cell size. Curr Opin Genet Dev 10:529–535

    Article  CAS  PubMed  Google Scholar 

  • Subramanian R, Kapoor T (2009) Meiotic spindle self-organization: one plus one equals only one. Curr Biol 19:R290–R292

    Article  CAS  PubMed  Google Scholar 

  • Tam LW, Wilson NF, Lefebvre PA (2007) A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J Cell Biol 176:819–829

    Article  CAS  PubMed  Google Scholar 

  • Traas J, Hulskamp M, Gendreau E, Hofte H (1998) Endoreduplication and development: rule without dividing? Curr Opin Plant Biol 1:498–503

    Article  CAS  PubMed  Google Scholar 

  • Umen JG (2005) The elusive sizer. Curr Opin Cell Biol 17:435–441

    Article  CAS  PubMed  Google Scholar 

  • Varga V, Helenius J, Tanaka K, Hyman AA, Tanaka TU, Howard J (2006) Yeast kinesin-8 depolymerizes microtubules in a length-dependent manner. Nat Cell Biol 8:957–962

    Article  CAS  PubMed  Google Scholar 

  • Varga V, Leduc C, Bormuth V, Diez S, Howard J (2009) Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 138:1174–1183

    Article  CAS  PubMed  Google Scholar 

  • Vogel S (2004) Living in a physical world. J Biosci 29:391–397

    Article  PubMed  Google Scholar 

  • von Dassow G (2009) Concurrent cues for cytokinetic furrow induction in animal cells. Trends Cell Biol 19:165–173

    Article  Google Scholar 

  • Webster M, Witkin KL, Cohen-Fix O (2009) Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J Cell Sci 122:1477–1486

    Article  CAS  PubMed  Google Scholar 

  • Wilson EB (1925) The cell in development and heredity. Macmillan, New York

    Google Scholar 

  • Wühr M, Chen Y, Dumont S, Groen AC, Needleman DJ, Salic A, Mitchison TJ (2008) Evidence for an upper limit to mitotic spindle length. Curr Biol 18:1256–1261

    Article  PubMed Central  PubMed  Google Scholar 

  • Yan M, Rayapuram N, Subramani S (2005) The control of peroxisome number and size during division and proliferation. Curr Opin Cell Biol 17:376–383

    Article  CAS  PubMed  Google Scholar 

  • Zink D, Fischer AH, Nickerson JA (2004) Nuclear structure in cancer cells. Nat Rev Cancer 4:677–687

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yukinobu Arata for his advice, Ritsuya Niwayama, Kenji Kimura, Takeshi Sugawara, and Hiroshi Koyama for reading the manuscript. This work was supported by grants from the Ministry of Education, Culture, Sports, Science, and Technology (Japan) (to Y.H. and A.K.), the Transdisciplinary Research Integration Center of the Research Organization of Information and Systems (to A.K.), and by a Fellowship from the Japan Society for the Promotion of Science (to Y.H.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akatsuki Kimura .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hara, Y., Kimura, A. (2011). Cell-Size-Dependent Control of Organelle Sizes During Development. In: Kubiak, J. (eds) Cell Cycle in Development. Results and Problems in Cell Differentiation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-19065-0_5

Download citation

Publish with us

Policies and ethics