Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 268))

Abstract

Because of the potential damage to the cell, intracellular protein degradation is one of the most tightly regulated processes in living systems. As a consequence, all protein breakdown in the cell is energy dependent, even though proteolysis is fundamentally exergonic. The basic regulatory strategy has been the confinement of proteolytic active sites to internal compartments with tightly controlled access. In eukaryotes this has eventually led to the evolution of a dedicated organelle, the lysosome, in which the primary energy-dependent step is the translocation of substrates across the membrane. The oldest solution, however (which still handles the bulk of intracellular proteolysis even in eukaryotes) is a set of proteases that form barrel-shaped complexes through self-association, enclosing a central proteolytic cavity (Lupas et al. 1997b). Access to this cavity is provided by polar pores guarded by ring-shaped ATPases, which unfold and translocate substrate proteins in an energy-dependent manner. Prokaryotes contain several such proteases, including Lon, ClpAP, ClpXP, FtsH, and proteasomes, but the only one present outside of organelles in eukaryotes is the proteasome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahmadian MR, Stege P, Scheffzek K, Wittinghofer A (1997) Confirmation of the arginine-finger hypothesis for the GAP-stimulated GTP-hydrolysis reaction of Ras. Nature Struct Biol 4:686–689

    Article  PubMed  CAS  Google Scholar 

  • Akopian TN, Kisselev AF, Goldberg AL (1997) Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J Biol Chem 272:1791–1798

    Article  PubMed  CAS  Google Scholar 

  • Aravind L, Ponting CP (1998) Homologues of 26S proteasome subunits are regulators of transcription and translation. Protein Sci 7:1250–1254

    Article  PubMed  CAS  Google Scholar 

  • Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380

    Article  PubMed  CAS  Google Scholar 

  • Beyer A (1997) Sequence analysis of the AAA protein family. Protein Sci 6:2043–2058

    Article  PubMed  CAS  Google Scholar 

  • Bochtler M, Ditzel L, Groll M, Huber R (1997) Crystal structure of heat shock locus V (HslV) from Escherichia coli. Proc Natl Acad Sci USA 94:6070–6074

    Article  PubMed  CAS  Google Scholar 

  • Bompard-Gilles C, Villeret V, Davies GJ, Fanuel L, Joris B, Frere JM, Van Beeumen J (2000) A new variant of the Ntn hydrolase fold revealed by the crystal structure of l-aminopeptidase d-ala-esterase/ amidase from Ochrobactrum anthropi. Structure Fold Des 8:153–162

    Article  PubMed  CAS  Google Scholar 

  • Bouzat JL, McNeil LK, Robertson HM, Solter LF, Nixon JE, Beever JE, Gaskins HR, Olsen G, Subramaniam S, Sogin ML, Lewin HA (2000) Phylogenomic analysis of the alpha proteasome gene family from early diverging eukaryotes. J Mol Evol 51:532–543

    PubMed  CAS  Google Scholar 

  • Brannigan JA, Dodson G, Duggleby HJ, Moody PC, Smith JL, Tomchick DR, Murzin AG (1995) A protein catalytic framework with an N-terminal nucleophile is capable of self-activation. Nature 378:416–419, 644

    Article  PubMed  CAS  Google Scholar 

  • Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nature Cell Biol 1:221–226

    Article  PubMed  CAS  Google Scholar 

  • Chen P, Hochstrasser M (1996) Autocatalytic subunit processing couples active site formation in the 20S proteasome to completion of assembly. Cell 86:961–972

    Article  PubMed  CAS  Google Scholar 

  • Chu-Ping M, Slaughter CA, DeMartino GN (1992) Identification, purification, and characterization of a protein activator (PA28) of the 20S proteasome (macropain). J Biol Chem 267:10515–10523

    Google Scholar 

  • Coux O, Nothwang HG, Silva Pereira I, Recillas Targa F, Bey F, Scherrer K (1994) Phylogenic relationships of the amino acid sequences of prosome (proteasome, MCP) subunits. Mol Gen Genet 245:769–780

    Article  PubMed  CAS  Google Scholar 

  • Coux O, Tanaka K, Goldberg AL (1996) Structure and functions of the 20S and 26S proteasomes. Annu Rev Biochem 65:801–847

    Article  PubMed  CAS  Google Scholar 

  • Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26S protease subunit that binds ubiquitin conjugates. J Biol Chem 269:7059–7061

    PubMed  CAS  Google Scholar 

  • Dick TP, Ruppert T, Groettrup M, Kloetzel PM, Kuehn L, Koszinowski UH, Stevanovic S, Schild H, Rammensee HG (1996) Coordinated dual cleavages induced by the proteasome regulator PA28 lead to dominant MHC ligands. Cell 86:253–262

    Article  PubMed  CAS  Google Scholar 

  • Dubiel W, Pratt G, Ferrell K, Rechsteiner M (1992) Purification of an 11S regulator of the multicatalytic protease. J Biol Chem 267:22369–22377

    PubMed  CAS  Google Scholar 

  • Duggleby HJ, Tolley SP, Hill CP, Dodson EJ, Dodson G, Moody PC (1995) Penicillin acylase has a single-amino-acid catalytic centre. Nature 373:264–268

    Article  PubMed  CAS  Google Scholar 

  • Fu H, Doelling JH, Arendt CS, Hochstrasser M, Vierstra RD (1998) Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics 149:677–692

    PubMed  CAS  Google Scholar 

  • Glickman MH, Rubin DM, Coux O, Wefes I, Pfeifer G, Cjeka Z, Baumeister W, Fried VA, Finley D (1998) A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94:615–623

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AL, Gaczynska M, Grant E, Michalek M, Rock KL (1995) Functions of the proteasome in antigen presentation. Cold Spring Harb Symp Quant Biol 60:479–490

    PubMed  CAS  Google Scholar 

  • Guan C, Cui T, Rao V, Liao W, Benner J, Lin CL, Comb D (1996) Activation of glycosylasparaginase. Formation of active N-terminal threonine by intramolecular autoproteolysis. J Biol Chem 271: 1732–1737

    Article  PubMed  CAS  Google Scholar 

  • Guenther B, Onrust R, Sali A, O’Donnell M, Kuriyan J (1997) Crystal structure of the delta’ subunit of the clamp-loader complex of E. coli DNA polymerase III. Cell 91:335–345

    Article  PubMed  CAS  Google Scholar 

  • Haracska L, Udvardy A (1995) Cloning and sequencing a non-ATPase subunit of the regulatory complex of the Drosophila 26S protease. Eur J Biochem 231:720–725

    Article  PubMed  CAS  Google Scholar 

  • Hilt W, Wolf DH (1996) Proteasomes: destruction as a programme. Trends Biochem Sci 21:96–102

    PubMed  CAS  Google Scholar 

  • Hofmann K, Bucher P (1998) The PCI domain: a common theme in three multiprotein complexes. Trends Biochem Sci 23:204–205

    Article  PubMed  CAS  Google Scholar 

  • Hughes AL (1997) Evolution of the proteasome components. Immunogenetics 46(2):82–92

    Article  PubMed  CAS  Google Scholar 

  • Kapelan B, Bech-Otschir D, Hegerl R. Schade R, Dumdey R, Dubiel W (2000) Electron Microscopy and Subunit-Subunit Interaction Studies Reveal a First Architecture of COP9 Signalosome. J Mol Biol 300:1169–1178

    Article  Google Scholar 

  • Knipfer N, Shrader TE (1997) Inactivation of the 20S proteasome in Mycobacterium smegmatis. Mol Microbiol 25:375–383

    Article  PubMed  CAS  Google Scholar 

  • Knipfer N, Seth A, Roudiak SG, Shrader TE (1999) Species variation in ATP-dependent protein degradation: protease profiles differ between mycobacteria and protease functions differ between Mycobacterium smegmatis and Escherichia coli. Gene 231:95–104

    Article  PubMed  CAS  Google Scholar 

  • Korolev S, Yao N, Lohman TM, Weber PC, Waksman G (1998) Comparisons between the structures of HCV and Rep helicases reveal structural similarities between SF1 and SF2 super-families of helicases. Protein Sci 7:605–610

    Article  PubMed  CAS  Google Scholar 

  • Kuehn L, Dahlmann B (1997) Structural and functional properties of proteasome activator PA28. Mol Biol Rep 24:89–93

    Article  PubMed  CAS  Google Scholar 

  • Langer T (2000) AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem Sci 25:247–251

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Park OK, Kang HS (2000) Identification of a new active site for autocatalytic processing of penicillin acylase precursor in Escherichia coli ATCC11105. Biochem Biophys Res Commun 272: 199–204

    Article  PubMed  CAS  Google Scholar 

  • Lenzen CU, Steinmann D, Whiteheart SW, Weis WI (1998) Crystal structure of the hexamerization domain of N-ethylmaleimide-sensitive fusion protein. Cell 94:525–536, 95:289

    Article  PubMed  CAS  Google Scholar 

  • Löwe J, Stock D, Jap B, Zwickl P, Baumeister W, Huber R (1995) Crystal structure of the 20S proteasome from the archaeon T. cicidophilum at 3.4 A resolution. Science 268:533–539

    Article  PubMed  Google Scholar 

  • Lupas A, Koster AJ, Baumeister W (1993) Structural features of 26S and 20S proteasomes. Enzyme Protein 47:252–273

    PubMed  CAS  Google Scholar 

  • Lupas A, Baumeister W, Hofmann K (1997a) A repetitive sequence in subunits of the 26S proteasome and 20S cyclosome (anaphase-promoting complex). Trends Biochem Sci 22:195–196

    Article  PubMed  CAS  Google Scholar 

  • Lupas A, Flanagan JM, Tamura T, Baumeister W (1997b) Self-compartmentalizing proteases. Trends Biochem Sci 22:399–404

    Article  PubMed  CAS  Google Scholar 

  • Lupas A, Zühl F, Tamura T, Wolf S, Nagy I, De Mot R, Baumeister W (1997c) Eubacterial proteasomes. Mol Biol Rep 24:125–131

    Article  PubMed  CAS  Google Scholar 

  • Monaco JJ, Nandi D (1995) The genetics of proteasomes and antigen processing. Annu Rev Genet 29:729–754

    Article  PubMed  CAS  Google Scholar 

  • Nadanaciva S, Weber J, Wilke-Mounts S, Senior AE (1999) Importance of Fl-ATPase residue alpha-Arg-376 for catalytic transition state stabilization. Biochemistry 38:15493–15499

    Article  PubMed  CAS  Google Scholar 

  • Nagy I, Tamura T, Vanderleyden J, Baumeister W, De Mot R (1998) The 20S proteasome of Streptomyces coelicolor. J Bacteriol 180:5448–5453

    PubMed  CAS  Google Scholar 

  • Neuwald AF, Aravind L, Spouge JL, Koonin EV (1999) AAA +: A class of chaperone-like ATPases associated with the assembly, operation, and disassembly of protein complexes. Genome Res 9:27–43

    PubMed  CAS  Google Scholar 

  • Peters J-M, Harris JR, Finley D (eds) (1998) Ubiquitin and the biology of the cell. Plenum Press, New York

    Google Scholar 

  • Pouch MN, Cournoyer B, Baumeister W (2000) Characterization of the 20S proteasome from the actinomycete Frcinkia. Mol Microbiol 35:368–377

    Article  PubMed  CAS  Google Scholar 

  • Pühler G, Pitzer F, Zwickl P, Baumeister W (1994) Proteasomes: multisubunit proteinases common to Thermoplasma and eukaryotes. System Appl Microbiol 16:734–741

    Google Scholar 

  • Realini C, Rogers SW, Rechsteiner M (1994) KEKE motifs. Proposed roles in protein-protein association and presentation of peptides by MHC class I receptors. FEBS Lett 348:109–113

    Article  Google Scholar 

  • Rechsteiner M (1998) The 26S proteasome. In: Peters J-M, Harris JR, Finley D (eds) Ubiquitin and the biology of the cell. Plenum Press, New York

    Google Scholar 

  • Rockel B, Walz J, Hegerl R, Peters J, Typke D, Baumeister W (1999) Structure of VAT, a CDC48/p97 ATPase homologue from the archaeon Thermoplasma acidophilum as studied by electron tomography. FEBS Lett 451:27–32

    Article  PubMed  CAS  Google Scholar 

  • Rohrwild M, Pfeifer G, Santarius U, Muller SA, Huang HC, Engel A, Baumeister W, Goldberg AL (1997) The ATP-dependent HslVU protease from Escherichia coli is a four-ring structure resembling the proteasome. Nature Struct Biol 4:133–139

    Article  PubMed  CAS  Google Scholar 

  • Ruepp A, Graml W, Santos-Martinez M-L, Koretke KK, Volker C, Mewes HW, Frishman D, Stocker S, Lupas AN, Baumeister W (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilam. Nature 407:508–513

    Article  PubMed  CAS  Google Scholar 

  • Saier MH (1999) Genome archeology leading to the characterization and classification of transport proteins. Curr Opin Microbiol 2:555 561

    Article  PubMed  Google Scholar 

  • Scheffzek K, Ahmadian MR, Kabsch W, Wiesmuller L, Lautwein A, Schmitz F, Wittinghofer A (1997) The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. Science 277:333–338

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Lupas AN, Finley D (1999) Structure and mechanism of ATP-dependent proteases. Curr Opin Chem Biol 3:584–591

    Article  PubMed  CAS  Google Scholar 

  • Schmidtke G, Schmidt M, Kloetzel PM (1997) Maturation of mammalian 20S proteasome: purification and characterization of 13S and 16S proteasome precursor complexes. J Mol Biol 268:95–106

    Article  PubMed  CAS  Google Scholar 

  • Seemuller E, Lupas A, Stock D, Löwe J, Huber R, Baumeister W (1995) Proteasome from Thermoplasma acidophilum a threonine protease. Science 268:579–582

    Article  PubMed  CAS  Google Scholar 

  • Seemuller E, Lupas A, Baumeister W (1996) Autocatalytic processing of the 20S proteasome. Nature 382:468–471

    Article  PubMed  CAS  Google Scholar 

  • Swaffield JC, Purugganan MD (1997) The evolution of the conserved ATPase domain (CAD): reconstructing the history of an ancient protein module. J Mol Evol 45:549–563

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Nagy I, Lupas A, Lottspeich F, Cejka Z, Schoofs G, Tanaka K, De Mot R, Baumeister W (1995) The first characterization of a eubacterial proteasome: the 20S complex of Rhodococcus. Curr Biol 5:766–774

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K (1994) Role of proteasomes modified by interferon-gamma in antigen processing. J Leukoc Biol 56:571–575

    PubMed  CAS  Google Scholar 

  • To WY, Wang CC (1997) Identification and characterization of an activated 20S proteasome in Trypanosoma brucei. FEBS Lett. 1997 404:253–262

    Article  PubMed  CAS  Google Scholar 

  • Ustrell V, Realini C, Pratt G, Rechsteiner M (1995) Human lymphoblast and erythrocyte multicatalytic proteases: differential peptidase activities and responses to the 11S regulator. FEBS Lett 376:155–158

    Article  PubMed  CAS  Google Scholar 

  • van Poelje PD, Snell EE (1988) Amine cations promote concurrent conversion of prohistidine decarboxylase from Lactobacillus 30a to active enzyme and a modified proenzyme. Proc Natl Acad Sci USA 85:8449–8453, 86:1223

    Article  PubMed  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  PubMed  CAS  Google Scholar 

  • Waldmann T, Lupas A, Kellermann J, Peters J, Baumeister W (1995) Primary structure of the thermosome from Thermoplasma acidophilum. Biol Chem Hoppe Seyler 376:119–126

    Article  PubMed  CAS  Google Scholar 

  • Walz J, Erdmann A, Kania M, Typke D, Koster AJ, Baumeister W (1998) 26S proteasome structure revealed by three-dimensional electron microscopy. J Struct Biol 121:19–29

    Article  PubMed  CAS  Google Scholar 

  • Wei N, Deng XW (1999) Making sense of the COP9 signalosome. A regulatory protein complex conserved from Arabidopsis to human. Trends Genet 15:98–103

    Article  PubMed  CAS  Google Scholar 

  • Wei N, Tsuge T, Serino G, Dohmae N, Takio K, Matsui M, Deng XW (1998) The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr Biol 8:919–922

    Article  PubMed  CAS  Google Scholar 

  • Whitby FG, Masters EI, Kramer L, Knowlton JR, Yao Y, Wang CC, Hill CP (2000) Structural basis for the activation of 20S proteasomes by 11S regulators. Nature 408:115–120

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Nagy I, Lupas A, Pfeifer G, Cejka Z, Muller SA, Engel A, De Mot R, Baumeister W (1998) Characterization of ARC, a divergent member of the AAA ATPase family from Rhodococcus erythropolis. J Mol Biol 277:13–25

    Article  PubMed  CAS  Google Scholar 

  • Wollenberg K, Swaffield JC (2001) Evolution of proteasomal ATPases. Mol Biol Evol 18:962–974

    PubMed  CAS  Google Scholar 

  • Xiong H, Pegg AE (1999) Mechanistic studies of the processing of human S-adenosylmethionine decarboxylase proenzyme. Isolation of an ester intermediate. J Biol Chem 274:35059–35066

    Article  PubMed  CAS  Google Scholar 

  • Xu MQ, Comb DG, Paulus H, Noren CJ, Shao Y, Perler FB (1994) Protein splicing: an analysis of the branched intermediate and its resolution by succinimide formation. EMBO J 13:5517–5522

    PubMed  CAS  Google Scholar 

  • Yao Y, Huang L, Krutchinsky A, Wong ML, Standing KG, Burlingame AL, Wang CC (1999) Structural and functional characterizations of the proteasome-activating protein PA26 from Trypanosoma brucei. J Biol Chem 274:33921–33930

    Article  PubMed  CAS  Google Scholar 

  • York I A, Goldberg AL, Mo XY, Rock KL (1999) Proteolysis and class I major histocompatibility complex antigen presentation. Immunol Rev 172:49–66

    Article  PubMed  CAS  Google Scholar 

  • Yu RC, Hanson PI, Jahn R, Brunger AT (1998) Structure of the ATP-dependent oligomerization domain of N-ethylmaleimide sensitive factor complexed with ATP. Nature Struct Biol 5:803–811, 924

    Article  PubMed  CAS  Google Scholar 

  • Zhang Z, Krutchinsky A, Endicott S, Realini C, Rechsteiner M, Standing KG (1999) Proteasome activator 11S REG or PA28: recombinant REG α/REG β hetero-oligomers are heptamers. Biochemistry 38:5651–5658

    Article  PubMed  CAS  Google Scholar 

  • Zühl F, Seemuller E, Golbik R, Baumeister W (1997) Dissecting the assembly pathway of the 20S proteasome. FEBS Lett 418:189–194

    Article  PubMed  Google Scholar 

  • Zwickl P, Ng D, Woo KM, Klenk HP, Goldberg AL (1999) An archaebacterial ATPase, homologous to ATPases in the eukaryotic 26S proteasome, activates protein breakdown by 20S proteasomes. J Biol Chem 274:26008–26014

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Volker, C., Lupas, A.N. (2002). Molecular Evolution of Proteasomes. In: Zwickl, P., Baumeister, W. (eds) The Proteasome — Ubiquitin Protein Degradation Pathway. Current Topics in Microbiology and Immunology, vol 268. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59414-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59414-4_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63971-5

  • Online ISBN: 978-3-642-59414-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics