Skip to main content

Signal Transduction Pathways Activated by the IL-1 Receptor/Toll-Like Receptor Superfamily

  • Chapter
Toll-Like Receptor Family Members and Their Ligands

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 270))

Abstract

Toll-like receptors (TLRs) are an important point of first contact between host and microbe, and once activated generate signals which culminate in the induction of genes important for host defence. TLRs respond to different microbial products, and the signalling pathways activated are very similar to that generated by the pro-inflammatory cytokine interleukin-1 (IL-1). This is because the Type I IL-1 receptor and TLRs are highly homologous in their cytosolic portions, possessing a Toll/IL-1 receptor (TIR) domain. Signals triggered include the important transcription factor NF-кB and two MAP kinases, p38 and Jun N-terminal kinase. Receptor-proximal proteins involved include the adapter MyD88, IRAK, IRAK-2, Tollip, TRAF6 and TAK-1. These latter two proteins need to be ubiquitinated in order to be active. Differences between signals generated by TLRs are emerging, with TLR-4 signalling requiring an additional adapter termed MyD88-adapter-like (Mal), which may regulate the expression of genes specific for the response required to eliminate infection by Gram-negative bacteria. Future studies on TLR signalling may reveal hitherto unsuspected specificities in the innate immune response to infection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi O, Kawai T, Takeda K, Matsumoto M, Tsutsui H, Sakagami M, Nakanishi K, Akira S (1998) Targetted disruption of the MyD88 gene results in loss of IL-1 and IL-18-mediated function. Immunity 9: 143 - 150

    Article  PubMed  CAS  Google Scholar 

  • Alexopoulou L, Holt AC, Medzhitov R, Flavell RA (2001) Recognition of double stranded RNA and activation of NF-KB by Toll-like receptor 3. Nature 413: 696 - 712

    Article  Google Scholar 

  • Anderson KV, Bokla L, Nusslein-Volhard C (1985) Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 42: 791 - 798

    Article  PubMed  CAS  Google Scholar 

  • Aliprantis, AO, Yang RB, Mark MR, Suggett S, Devaux B, Radolf JD, Klimpel GR, Godowski P, Zychlinsky A (1999) Cell activation and apoptosis by bacterial lipoproteins through Toll-like receptor-2. Science 285: 736 - 739

    Article  PubMed  CAS  Google Scholar 

  • Arbibe L, Mira JP, Teusch N, Kline L, Guha M, Mackman N, Godowski PJ, Ulevitch RJ, Knaus UG (2000) Toll-like receptor 2 -mediated NF-KB requires a Racl-dependent pathway. Nature Immunol 1: 533 - 540

    Article  CAS  Google Scholar 

  • Bowie, A, Kiss-Toth E, Symons JA, Smith GL, Dower SK, O’Neill LA (2000) A46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sci USA 97: 10162 - 10167

    Article  PubMed  CAS  Google Scholar 

  • Brightbill HD, Libraty DH, Krutzik SR, Yang RB, Belisle JT, Bleharski JR, Maitland M, Norgard MV, Plevy SE, Smale ST, Brennan PJ, Bloom BR, Godowski PJ, Modlin RL (1999) Host defense mechanisms triggered by microbial lipoproteins through Toll-like receptors. Science 285: 732 - 736

    Article  PubMed  CAS  Google Scholar 

  • Bulut, Y, Faure E, Thomas L, Equils O, Arditi M (2001) Coperation of TLR-2 and -6 for cellular activation by soluble tuberculosis factor and Borellia burdoferi outer surface protein A lipoprotein: role of Toll-interacting protein and IL-1 receptor signalling molecules in Toll-like receptor 2 signalling. J Immunol 167: 987 - 994

    PubMed  CAS  Google Scholar 

  • Burns, K, Martinon F, Esslinger C, Pahl H, Schneider P, Bodmer JL, Di Marco F, French L, Tschopp J (1998) MyD88: an adapter protein involved in interleukin-1 signalling. J Biol Chem 273: 12203 - 12209

    Article  PubMed  CAS  Google Scholar 

  • Burns, K, Clatworthy J, Martin L, Martinon F, Plumpton C, Maschera B, Lewis A, Ray K, Tschopp J, Volpe F (2000) Tollip, a new component of the IL-1RI pathway links IRAK to the IL-1 receptor. Nature Cell Biol 2: 364 - 351

    Google Scholar 

  • Cao Z, Henzel WJ, Gao X (1996a) IRAK: a kinase associated with the interleukin-1 receptor. Science 271: 1128 - 1131

    Article  CAS  Google Scholar 

  • Cao Z., Xiong J, Takeuchi M, Kurama T, Goeddel DV (1996b) Traf-6 is a signal transducer for interleukin-1. Nature 383:443-46

    Google Scholar 

  • Caunt CJ, Kiss-Toth E, Carlotti F, Chapman R, Qwarnstrom EE (2001) Ras controls tumor necrosis factor receptor-associated factor (TRAF)6-dependent induction of nuclear factor-K b. Selective regulation through receptor signaling components. J Biol Chem 276: 6280 - 6288

    Article  PubMed  CAS  Google Scholar 

  • Chen CY, Del Gatto-Konczak F, Wu Z, Karin M (1998) Stabilization of interleukin-2 mRNA by the c-Jun NH2-terminal kinase pathway. Science 280: 1945 - 1949

    Article  PubMed  CAS  Google Scholar 

  • Dunn E, Sims JE, Nicklin MJ, O’Neill LA (2001) Annotating genes with potential roles in the immune system: six new members of the IL-1 family. Trends in Immunol 22: 533 - 536

    Article  CAS  Google Scholar 

  • Da Silva Correia J, Soldau K, Christen U, Tobias PS, Ulevitch RJ (2001) Lipopolysaccharide is in close proximity to each of the proteins in its membrane receptor complex. Transfer from CD14 to TLR-4 and ND2. J Biol Chem 276: 21129 - 21135

    Article  PubMed  Google Scholar 

  • Fitzgerald KA, Palsson-McDermott EM, Bowie AG, Jefferies CA, Mansell AS, Brady G, Brint E, Dunne A, Gray P, Harte MT, McMurray D, Smith DE, Sims JE, Bird TA, O’Neill LA (2001) Mai (MyD88 adapter-like) is required for TLR-4 signal transduction. Nature 413: 78 - 83

    Article  PubMed  CAS  Google Scholar 

  • Gay NJ, Keith F (1991) Drosophila Toll and IL-1 receptor. Nature 351: 355 - 356

    Article  PubMed  CAS  Google Scholar 

  • Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL (2001) Cutting edge: bacterial flagellin activates basolaterally expressed TLR-5 to induce epithelial proinflammatory gene expression. J Immunol 167: 1882 - 1885

    PubMed  CAS  Google Scholar 

  • Hayashi F, Smith KD, Ozinsky A, Hawn TR, Yi EC, Goodlett DR, Eng JK, Akira S, Underhill DM, Aderem A (2001) The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099 - 1103

    Article  PubMed  CAS  Google Scholar 

  • Heguy A, Baldari CT, Macchia G, Telford JL, Melli M (1992) Amino acids conserved in the interleukin-1 receptors (IL-IRs) and the Drosophila Toll protein are essential for IL-1R signal transduction. J Biol Chem 267: 2605 - 2609

    PubMed  CAS  Google Scholar 

  • Hedengren M, Asling B, Dushay MS, Ando I, Ekengren S, Wihlborg M, Hultmark D (1999) Relish, a central factor in the control of humoral but not cellular immunity in Drosophila. Mol Cell 4: 1 - 20

    Article  Google Scholar 

  • Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-liker receptor recognises bacterial DNA. Nature 408: 740 - 745

    Article  PubMed  CAS  Google Scholar 

  • Hirschfeld M, Weis JJ, Toshchakov V, Salkowski CA, Cody MJ, Ward DC, Qureshi N, Michalek SM, Vogel SN (2001) Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect Immun 69: 1477 - 82

    Article  PubMed  CAS  Google Scholar 

  • Horng T, Barton GM, Medzhitov R (2001) TIRAP: an adapter molecule in Toll signalling. Nature Immunol 2: 835 - 841

    Article  CAS  Google Scholar 

  • Hoshino K, Takeuchi O, Kawai T, Sanjo H, Ogawa T, Takeda Y, Takeda K, Akira S (1999) Cutting edge: Toll-like receptor 4 (TLR4)-deflcient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J Immunol 162: 3749 - 3752

    PubMed  CAS  Google Scholar 

  • Huang Q, Liu D, Majewski, P, Schulte LC, Korn JM, Young RA, Lander ES and Hacohen N (2001) The plasticity of dendritic cell responses to pathogens and their components. Science 294: 870 - 875

    Article  PubMed  CAS  Google Scholar 

  • Huang WY, Valles S, Qwarnstrom EE (2001) Translocation of the IL-1 receptor to focal adhesions is regulated through the C-terminal end of the cytoplasmic domain. Cell Biol Int 25: 309 - 317

    Article  PubMed  CAS  Google Scholar 

  • Huang WY, Valles S, Qwarnstrom EE (2001) Translocation of the IL-1 receptor to focal adhesions is regulated through the C-terminal end of the cytoplasmic domain. Cell Biol Int 25: 309 - 317

    Article  PubMed  CAS  Google Scholar 

  • Jefferies C, O’Neill LA J (2000) Racl regulated IL-1-induced NF-KB in an I-icB-independent manner by enhancing the ability of the p65 subunit to transactivate gene expression. J Biol Chem 275: 3114 - 3120

    Article  PubMed  CAS  Google Scholar 

  • Jefferies C, Bowie A, Brady G, Cooke EL, Li X, O’Neill LA (2001) Transactivation by the p65 subunit of NF-KB in response to IL-1 involves MyD88, IRAK, Traf-6 and Racl. Mol Cell Biol 21: 4544 - 4552

    Article  PubMed  CAS  Google Scholar 

  • Jones BW, Means TK, Heldwein KA, Keen MA, Hill PJ, Belisle JT, Fenton MJ (2001) Different Toll-like receptor agonists induce distinct macrophage responses. J Leukoc Biol 69: 1036 - 1044

    PubMed  CAS  Google Scholar 

  • Kaisho T, Takeuchi O, Kawai T, Hoshino K, Akira S (2001) Endotoxin-induced maturation of MyD88-deficient dendritic cells. J Immunol 166: 5688 - 5694

    PubMed  CAS  Google Scholar 

  • Kawai, T, Adachi O, Ogawa T, Takeda K, Akira S (1999) Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 11: 115 - 150

    Article  PubMed  CAS  Google Scholar 

  • Kawai T, Takeuchi O, Fujita T, Inoue J, Muhlradt PF, Sato S, Hoshino K, Akira S (2001) Lipopolysac¬charide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 167: 5887 - 5894

    PubMed  CAS  Google Scholar 

  • Kidd S (1992) Characterisation of the Drosophila cactus locus and analysis of interaction between cactus and dorsal proteins. Cell 71: 623 - 635

    Article  PubMed  CAS  Google Scholar 

  • Li X, Commane M, Burns C, Vithalani K, Cao Z, Stark G (1999) Mutant cells that do not respond to IL-1 reveal a novel role for IL-1 receptor-associated kinase. Mol Cell Biol 19: 4643 - 4652

    PubMed  CAS  Google Scholar 

  • Lemaitre B, Nicolas E, Michaut L, Reichhart JM, Hoffmann J A (1996) The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent anti-fungal response in Drosophila adults. Cell 86:973- 983

    Google Scholar 

  • Levashina EA, Langley E, Green C, Gubb D, Ashburner M, Hoffmann JA, Reichhart JM (1999) Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285: 1917 - 1919

    Article  PubMed  CAS  Google Scholar 

  • Letsou A, Alexander S, Orth K, Wasserman SA (1991) Genetic and molecular characterisation of tube, a Drosophila gene maternally required for embryonic dorsoventral polatiry. Proc Natl Acad Sci USA 88: 810 - 814

    Article  PubMed  CAS  Google Scholar 

  • Lord KA, Hoffman-Liebermann B, Liebermann DA (1990) Nucleotide sequence and expression of a cDNA encoding MyD88, a novel myeloid differentiation primary response gene induced by IL6.Oncogene 5: 1095 - 1097

    CAS  Google Scholar 

  • MacGillivray MK, Cruz TF, McCulloch CA (2000) The recruitment of the interleukin-1 (IL-1) receptor- associated kinase (IRAK) into focal adhesion complexes is required for IL-1 beta -induced ERK activation. J Biol Chem 275: 23509 - 23515

    Article  PubMed  CAS  Google Scholar 

  • Mahtani KR, Brook M, Dean JL, Sully G, Saklatvala J, Clark AR (2001) Mitogen-activated protein kinase p38 controls the expression and posttranslational modification of tristetraprolin, a regulator of tumor necrosis factor alpha mRNA stability. Mol Cell Biol 21: 6461 - 6469

    Article  PubMed  CAS  Google Scholar 

  • Mansell A, Reinicke A, Worrall DM, O’Neill LAJ (2002) The serine protease inhibitor anti-thrombin-III inhibits LPS-mediated NF-KB activation by TLR-4. FEBS Lett 508: 313 - 317

    Article  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 388: 394 - 397

    Article  PubMed  CAS  Google Scholar 

  • Medzhitov R, Preston-Hurlburt P, Kopp E, Stadlen A, Chen C, Ghosh S, Janeway CA Jr (1998) MyD88 is an adapter in the hToll/Il-1 receptor family signalling pathways. Mol Cell 2: 253 - 258

    Article  PubMed  CAS  Google Scholar 

  • Muzio M, Li J, Feng P, Dixit V (1997) IRAK (Pelle) family member IRAK-2 and MyD88 as proximal mediators of IL-1 signaling. Science 278: 1612 - 1615

    Article  PubMed  CAS  Google Scholar 

  • Naito A, Azuma S, Tanaka S, Miyazaki T, Takaki S, Takatsu K, Nakao K, Nakamura K, Katsuki M, Yamamoto T, Inoue J (1999) Severe osteopetrosis, defective interleukin-1 signalling and lymph node organogenesis in TRAF6-deficient mice. Genes Cells 1999 4: 353 - 362

    Article  Google Scholar 

  • O’Neill LAJ (2000) the interleukin-1 receptor/Toll-like receptor superfamily: signal transduction during inflammation and host defense. Science’s Signal Transduction Knowledge Environment. http://www.stke.org/cgi/content/full/OC_sigtrans;2000/44/rel

    Google Scholar 

  • O’Neill LAJ, Greene C (1998) Signal transduction pathways activated by the IL-1 receptor family: Ancient signalling machinery in mammals, insects and plants. J Leuk Biol 63: 650 - 657

    Google Scholar 

  • Ozinsky A, Underhill DM, Fontenot JD, Hajjar AM, Smith KD, Wilson CB, Schroeder L, Aderem A (2000) The reportoire for pattern recognition of pathogens by the innate immune system is defined by co-operation between Toll-like receptors. Proc Natl Acad Sci USA 97: 13766 - 13771

    Article  PubMed  CAS  Google Scholar 

  • Palsson EM, Popoff M, Thelestam M, O’Neill LA (2000) Divergent roles for Ras and Rap in the activation of p38 mitogen-activated protein kinase by interleukin-1. J Biol Chem 275: 7818 - 7825

    Article  PubMed  CAS  Google Scholar 

  • Poltorak A, He X, Smirnova I, Liu MY, Huffel CV, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signalling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282: 2085 - 2088

    Article  PubMed  CAS  Google Scholar 

  • Pujol N, Link EM, Liu LX, Kurz CL, Alloing G, Tan M, Ray KP, Solari R, Johnson CD, Ewbank JJ (2001) A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 11: 809 - 821

    Article  PubMed  CAS  Google Scholar 

  • Qian Y, Commane M, Ninomiya-Tsuji J, Matsumoto K, Li X (2001) IRAK-mediated translocation of Traf-6 and TAB2 in the interleukin-1-induced activation of NF-KB. J Biol Chem 276: 41661—41667

    Google Scholar 

  • Qureshi ST, Lariviere L, Leveque G, Clermont S, Moore KJ, Gros P, Malo D (1999) Endotoxin-tolerent mice have mutations in Toll-like receptor 4 (Tlr4). J Exp Med 189: 615 - 625

    Article  PubMed  CAS  Google Scholar 

  • Re F, Strominger JL (2001) Toll-like receptor 2 (tlr2) and tlr4 differentially activate human dendritic cells. J Biol Chem 276: 37692 - 37699

    Article  PubMed  CAS  Google Scholar 

  • Ridley SH, Sarsfield SJ, Lee JC, Bigg HF, Cawston TE, Taylor DJ, DeWitt DL, Saklatvala J (1997) Actions of IL-1 are selectively controlled by p38 mitogen-activated protein kinase: regulation of prostaglandin H synthase-2, metalloproteinases, and IL-6 at different levels. J Immunol 158: 3165 - 3173

    PubMed  CAS  Google Scholar 

  • Roth S, Stein D, Nusslein-Volhard C (1989) A gradient of nuclear localisation of the dorsal protein determines dorsoventral patterns in the Drosophila embryo. Cell 59: 1189 - 1202

    Article  PubMed  CAS  Google Scholar 

  • Schreuder H, Tardif C, Trump-Kallmeyer S, Soffientini A, Sarubbi E, Akeson A, Bowlin T, Yanofsky S, Barrett RW (1997) A new cytokine-receptor binding mode revealed by the crystal structure of the IL-1 receptor with an antagonist. Nature 386: 194 - 200

    Article  PubMed  CAS  Google Scholar 

  • Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ (1999) Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor-2. J Biol Chem 274: 17406 - 17409

    Article  PubMed  CAS  Google Scholar 

  • Shelton CA, Wasserman, SA (1993) pelle encodes a protein kinase required to establish dorsoventral polarity in the Drosophila embryo. Cell 72:515-525

    Google Scholar 

  • Sims JE, March CJ, Cosman D, Widmer MB, MacDonald HR, McMahan CJ, Grubin CE, Wignall JM, Jackson JL, Call SM, Dower SK (1988) cDNA expression cloning of the IL-1 receptor, a member of the immunoglobulin superfamily. Science 241:585-589

    Google Scholar 

  • Sims JE, Dower SK (1994) Interleukin-1 receptors. Eur Cyt Netw 5: 539 - 546

    CAS  Google Scholar 

  • Sizemore N, Leung S, Stark GR (1999) Activation of PI 3-kinase in response to IL-1 leads to phos¬phorylation and activation of the NF-kappa p65/RelA subunit. Mol Cell Biol 19: 4798 - 4805

    PubMed  CAS  Google Scholar 

  • Takaesu, G., Ninomiya-Tsuji J, Kishida S, Li X, Stark GR, Matsumoto K (2001) Interleukin-1 (IL-1) receptor-associated kinase leads to activation of TAK-1 by inducing TAB2 translocation in the IL-1 signalling pathway. Mol Cell Biol 21: 2475 - 2484

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S (1999) Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 11: 443 - 451

    Article  PubMed  CAS  Google Scholar 

  • Takeuchi, O Kaufmann A, Grote K, Kawai T, Hoshino K, Morr M, Muhlradt PF, Akira S (2000) Cutting edge: preferentially the R-stereoisomer of the mycoplasmal lipopeptide macrophage-acti- vating lipopeptide-2 activates immune cells through a toll-like receptor-2- and MyD88-dependent signalling pathway. J Immunol 164: 554 - 557

    PubMed  CAS  Google Scholar 

  • Takeuchi O, Kawai T, Muhlradt PF, Morr M, Radolf JD, Zychlinsky A, Takeda K, Akira S (2001) Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 13: 933 - 940

    Article  PubMed  CAS  Google Scholar 

  • Thomas JA, Allen JL, Tsen M, Dubnicoff T, Danao J, Liao XC, Cao Z, Wasserman SA (1999) Impaired cytokine signaling in mice lacking the IL-1 receptor-associated kinase. J Immunol 163: 978 - 984

    PubMed  CAS  Google Scholar 

  • Underhill, D, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A (1999) Toll-like receptor-2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature 401: 1477 - 1482

    Google Scholar 

  • Volpe, F, Clatworthy J, Kaptein A, Maschera B, Griffin AM, Ray K (1997) The IL-1 receptor accessory protein is responsible for the recruitment of the interluakin-1 receptor associated kinase to the IL-1/IL-1 receptor complex. FEBS Lett 419: 41 - 44

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Deng L, Hong M, Akkaraju GR, Inoue J, Chen ZJ (2001) TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412: 346 - 351

    Article  PubMed  CAS  Google Scholar 

  • Wesche H, Henzel WJ, Shillinglaw W, Li S, Cao Z (1997) MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7: 837 - 847

    Article  PubMed  CAS  Google Scholar 

  • Wu LP, Anderson KV (1998) regulated nuclear import of Rel proteins in the Drosophila immune response. Nature 395:93-97

    Google Scholar 

  • Wesche H, Gao X, Li X, Kirschning CJ, Stark GR, Cao Z (1999) IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J Biol Chem 274: 19403 - 19410

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L (2000) Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408: 111 - 115

    Article  PubMed  CAS  Google Scholar 

  • Yamin TT and Miller DK (1997) The Interleukin-1 receptor-associated kinase is degraded by pro tea-somes following its phosphorylation. J Biol Chem 272: 21540 - 21547

    Article  PubMed  CAS  Google Scholar 

  • Yang RB, Mark MR, Gurney AL, Godowski PJ (1999) Signaling events induced by lipopolysaccharide- activated toll-like receptor. J Immunol 163: 639 - 643

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Neill, L.A.J. (2002). Signal Transduction Pathways Activated by the IL-1 Receptor/Toll-Like Receptor Superfamily. In: Beutler, B., Wagner, H. (eds) Toll-Like Receptor Family Members and Their Ligands. Current Topics in Microbiology and Immunology, vol 270. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59430-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-59430-4_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63975-3

  • Online ISBN: 978-3-642-59430-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics