Skip to main content

Synaptic Dysfunction in Parkinson’s Disease

  • Chapter
  • First Online:
Synaptic Plasticity

Abstract

Activity-dependent modifications in synaptic efficacy, such as long-term depression (LTD) and long-term potentiation (LTP), represent key cellular substrates for adaptive motor control and procedural memory. The impairment of these two forms of synaptic plasticity in the nucleus striatum could account for the onset and the progression of motor and cognitive symptoms of Parkinson’s disease (PD), characterized by the massive degeneration of dopaminergic neurons. In fact, both LTD and LTP are peculiarly controlled and modulated by dopaminergic transmission coming from nigrostriatal terminals.

Changes in corticostriatal and nigrostriatal neuronal excitability may influence profoundly the threshold for the induction of synaptic plasticity, and changes in striatal synaptic transmission efficacy are supposed to play a role in the occurrence of PD symptoms. Understanding of these maladaptive forms of synaptic plasticity has mostly come from the analysis of experimental animal models of PD. A series of cellular and synaptic alterations occur in the striatum of experimental parkinsonism in response to the massive dopaminergic loss. In particular, dysfunctions in trafficking and subunit composition of glutamatergic NMDA receptors on striatal efferent neurons contribute to the clinical features of the experimental parkinsonism.

Interestingly, it has become increasingly evident that in striatal spiny neurons, the correct assembly of NMDA receptor complex at the postsynaptic site is a major player in early phases of PD, and it is sensitive to distinct degrees of DA denervation. The molecular defects at the basis of PD progression may be not confined just at the postsynaptic neuron: accumulating evidences have recently shown that the genes linked to PD play a critical role at the presynaptic site. DA release into the synaptic cleft relies on a proper presynaptic vesicular transport; impairment of SV trafficking, modification of DA flow, and altered presynaptic plasticity have been described in several PD animal models. Furthermore, an impaired DA turnover has been described in presymptomatic PD patients. Thus, given the pathological events occurring precociously at the synapses of PD patients, post- and presynaptic sites may represent an adequate target for early therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aasly, J. O., Toft, M., Fernandez-Mata, I., Kachergus, J., Hulihan, M., White, L. R., & Farrer, M. (2005). Clinical features of LRRK2-associated Parkinson’s disease in central Norway. Annals of Neurology, 57, 762–765.

    Article  CAS  PubMed  Google Scholar 

  • Abeliovich, A., Schmitz, Y., Farinas, I., Choi-Lundberg, D., Ho, W. H., Castillo, P. E., Shinsky, N., Verdugo, J. M., Armanini, M., Ryan, A., Hynes, M., Phillips, H., Sulzer, D., & Rosenthal, A. (2000). Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron, 25, 239–252.

    Article  CAS  PubMed  Google Scholar 

  • Adams, J. R., van Netten, H., Schulzer, M., Mak, E., McKenzie, J., Strongosky, A., Sossi, V., Ruth, T. J., Lee, C. S., Farrer, M., Gasser, T., Uitti, R. J., Calne, D. B., Wszolek, Z. K., & Stoessl, A. J. (2005). PET in LRRK2 mutations: Comparison to sporadic Parkinson’s disease and evidence for presymptomatic compensation. Brain, 128, 2777–2785.

    Article  PubMed  Google Scholar 

  • Anglade, P., Mouatt-Prigent, A., Agid, Y., & Hirsch, E. (1996). Synaptic plasticity in the caudate nucleus of patients with Parkinson’s disease. Neurodegeneration, 5, 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Berg, D., Schweitzer, K., Leitner, P., Zimprich, A., Lichtner, P., Belcredi, P., Brussel, T., Schulte, C., Maass, S., & Nagele, T. (2005). Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson’s disease*. Brain, 128, 3000–3011.

    PubMed  Google Scholar 

  • Bernard, V., Gardiol, A., Faucheux, B., Bloch, B., Agid, Y., & Hirsch, E. C. (1996). Expression of glutamate receptors in the human and rat basal ganglia: Effect of the dopaminergic denervation on AMPA receptor gene expression in the striatopallidal complex in Parkinson’s disease and rat with 6-OHDA lesion. The Journal of Comparative Neurology, 368, 553–568.

    Article  CAS  PubMed  Google Scholar 

  • Betarbet, R., Porter, R. H., & Greenamyre, J. T. (2000). GluR1 glutamate receptor subunit is regulated differentially in the primate basal ganglia following nigrostriatal dopamine denervation. Journal of Neurochemistry, 74, 1166–1174.

    Article  CAS  PubMed  Google Scholar 

  • Biskup, S., Moore, D. J., Celsi, F., Higashi, S., West, A. B., Andrabi, S. A., Kurkinen, K., Yu, S. W., Savitt, J. M., Waldvogel, H. J., Faull, R. L., Emson, P. C., Torp, R., Ottersen, O. P., Dawson, T. M., & Dawson, V. L. (2006). Localization of LRRK2 to membranous and vesicular structures in mammalian brain. Annals of Neurology, 60, 557–569.

    Article  CAS  PubMed  Google Scholar 

  • Bonifati, V. (2006a). Parkinson’s disease: The LRRK2-G2019S mutation: Opening a novel era in Parkinson’s disease genetics. European Journal of Human Genetics, 14, 1061–1062.

    Article  CAS  PubMed  Google Scholar 

  • Bonifati, V. (2006b). The pleomorphic pathology of inherited Parkinson’s disease: Lessons from LRRK2. Current Neurology and Neuroscience Reports, 6, 355–357.

    Article  CAS  PubMed  Google Scholar 

  • Bosgraaf, L., & Van Haastert, P. J. (2003). Roc, a Ras/GTPase domain in complex proteins. Biochimica et Biophysica Acta, 1643, 5–10.

    Article  CAS  PubMed  Google Scholar 

  • Cabin, D. E., Shimazu, K., Murphy, D., Cole, N. B., Gottschalk, W., McIlwain, K. L., Orrison, B., Chen, A., Ellis, C. E., Paylor, R., Lu, B., & Nussbaum, R. L. (2002). Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. The Journal of Neuroscience, 22, 8797–8807.

    CAS  PubMed  Google Scholar 

  • Calabresi, P., Maj, R., Mercuri, N. B., & Bernardi, G. (1992a). Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neuroscience Letters, 142, 95–99.

    Article  CAS  PubMed  Google Scholar 

  • Calabresi, P., Pisani, A., Mercuri, N. B., & Bernardi, G. (1992b). Long-term potentiation in the striatum is unmasked by removing the voltage-dependent magnesium block of NMDA receptor channels. European Journal of Neuroscience, 4, 929–935.

    Article  PubMed  Google Scholar 

  • Calabresi, P., Picconi, B., Parnetti, L., & Di Filippo, M. (2006). A convergent model for cognitive dysfunctions in Parkinson’s disease: The critical dopamine-acetylcholine synaptic balance. Lancet Neurology, 5, 974–983.

    Article  CAS  PubMed  Google Scholar 

  • Calabresi, P., Picconi, B., Tozzi, A., & Di Filippo, M. (2007). Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends in Neurosciences, 30, 211–219.

    Article  CAS  PubMed  Google Scholar 

  • Calabresi, P., Maj, R., Pisani, A., Mercuri, N. B., & Bernardi, G. (1992c). Long-term synaptic depression in the striatum: Physiological and pharmacological characterization. The Journal of Neuroscience, 12, 4224–4233.

    CAS  PubMed  Google Scholar 

  • Calabresi, P., Gubellini, P., Centonze, D., Picconi, B., Bernardi, G., Chergui, K., Svenningsson, P., Fienberg, A. A., & Greengard, P. (2000). Dopamine and cAMP-regulated phosphoprotein 32 kDa controls both striatal long-term depression and long-term potentiation, opposing forms of synaptic plasticity. The Journal of Neuroscience, 20, 8443–8451.

    CAS  PubMed  Google Scholar 

  • Carballo-Carbajal, I., Weber-Endress, S., Rovelli, G., Chan, D., Wolozin, B., Klein, C. L., Patenge, N., Gasser, T., & Kahle, P. J. (2010). Leucine-rich repeat kinase 2 induces alpha-synuclein expression via the extracellular signal-regulated kinase pathway. Cellular Signalling, 22, 821–827.

    Article  CAS  PubMed  Google Scholar 

  • Charpier, S., & Deniau, J. M. (1997). In vivo activity-dependent plasticity at cortico-striatal connections: Evidence for physiological long-term potentiation. Proceedings of the National Academy of Sciences of the United States of America, 94, 7036–7040.

    Article  CAS  PubMed  Google Scholar 

  • Collingridge, G. L., & Bliss, T. V. (1995). Memories of NMDA receptors and LTP. Trends in Neurosciences, 18, 54–56.

    Article  CAS  PubMed  Google Scholar 

  • Collingridge, G. L., Isaac, J. T., & Wang, Y. T. (2004). Receptor trafficking and synaptic plasticity. Nature Reviews: Neuroscience, 5, 952–962.

    Article  CAS  PubMed  Google Scholar 

  • Day, M., Wang, Z., Ding, J., An, X., Ingham, C. A., Shering, A. F., Wokosin, D., Ilijic, E., Sun, Z., Sampson, A. R., Mugnaini, E., Deutch, A. Y., Sesack, S. R., Arbuthnott, G. W., & Surmeier, D. J. (2006). Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nature Neuroscience, 9, 251–259.

    Article  CAS  PubMed  Google Scholar 

  • Dickson, D. W., Braak, H., Duda, J. E., Duyckaerts, C., Gasser, T., Halliday, G. M., Hardy, J., Leverenz, J. B., Del Tredici, K., Wszolek, Z. K., & Litvan, I. (2009). Neuropathological assessment of Parkinson’s disease: Refining the diagnostic criteria. Lancet Neurology, 8, 1150–1157.

    Article  CAS  PubMed  Google Scholar 

  • Dingledine, R., Borges, K., Bowie, D., & Traynelis, S. F. (1999). The glutamate receptor ion channels. Pharmacological Reviews, 51, 7–61.

    CAS  PubMed  Google Scholar 

  • Dunah, A. W., & Standaert, D. G. (2001). Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. The Journal of Neuroscience, 21, 5546–5558.

    CAS  PubMed  Google Scholar 

  • Ehlers, M. D. (2003). Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature Neuroscience, 6, 231–242.

    Article  CAS  PubMed  Google Scholar 

  • Fdez, E., & Hilfiker, S. (2006). Vesicle pools and synapsins: New insights into old enigmas. Brain Cell Biology, 35, 107–115.

    Article  PubMed  Google Scholar 

  • Fortin, D. L., Nemani, V. M., Nakamura, K., & Edwards, R. H. (2010). The behavior of alpha-synuclein in neurons. Movement Disorders, 25(Suppl 1), S21–26.

    Article  PubMed  Google Scholar 

  • Galter, D., Westerlund, M., Carmine, A., Lindqvist, E., Sydow, O., & Olson, L. (2006). LRRK2 expression linked to dopamine-innervated areas. Annals of Neurology, 59, 714–719.

    Article  CAS  PubMed  Google Scholar 

  • Gardoni, F., Caputi, A., Cimino, M., Pastorino, L., Cattabeni, F., & Di Luca, M. (1998). Calcium/calmodulin-dependent protein kinase II is associated with NR2A/B subunits of NMDA receptor in postsynaptic densities. Journal of Neurochemistry, 71, 1733–1741.

    Article  CAS  PubMed  Google Scholar 

  • Gardoni, F., Schrama, L. H., Kamal, A., Gispen, W. H., Cattabeni, F., & Di Luca, M. (2001). Hippocampal synaptic plasticity involves competition between Ca2+/calmodulin-dependent protein kinase II and postsynaptic density 95 for binding to the NR2A subunit of the NMDA receptor. The Journal of Neuroscience, 21, 1501–1509.

    CAS  PubMed  Google Scholar 

  • Gardoni, F., Picconi, B., Ghiglieri, V., Polli, F., Bagetta, V., Bernardi, G., Cattabeni, F., Di Luca, M., & Calabresi, P. (2006). A critical interaction between NR2B and MAGUK in L-DOPA induced dyskinesia. The Journal of Neuroscience, 26, 2914–2922.

    Article  CAS  PubMed  Google Scholar 

  • Gasser, T. (2009). Molecular pathogenesis of Parkinson disease: Insights from genetic studies. Expert Reviews in Molecular Medicine, 11, e22.

    Article  PubMed  Google Scholar 

  • Gilks, W. P., Abou-Sleiman, P. M., Gandhi, S., Jain, S., Singleton, A., Lees, A. J., Shaw, K., Bhatia, K. P., Bonifati, V., Quinn, N. P., Lynch, J., Healy, D. G., Holton, J. L., Revesz, T., & Wood, N. W. (2005). A common LRRK2 mutation in idiopathic Parkinson’s disease. Lancet, 365, 415–416.

    CAS  PubMed  Google Scholar 

  • Gillardon, F. (2009). Leucine-rich repeat kinase 2 phosphorylates brain tubulin-beta isoforms and modulates microtubule stability – a point of convergence in parkinsonian neurodegeneration? Journal of Neurochemistry, 110, 1514–1522.

    Article  CAS  PubMed  Google Scholar 

  • Gispert, S., Ricciardi, F., Kurz, A., Azizov, M., Hoepken, H. H., Becker, D., Voos, W., Leuner, K., Muller, W. E., Kudin, A. P., Kunz, W. S., Zimmermann, A., Roeper, J., Wenzel, D., Jendrach, M., Garcia-Arencibia, M., Fernandez-Ruiz, J., Huber, L., Rohrer, H., Barrera, M., Reichert, A. S., Rub, U., Chen, A., Nussbaum, R. L., & Auburger, G. (2009). Parkinson phenotype in aged PINK1-deficient mice is accompanied by progressive mitochondrial dysfunction in absence of neurodegeneration. PLoS One, 4, e5777.

    Article  PubMed  CAS  Google Scholar 

  • Gloeckner, C. J., Schumacher, A., Boldt, K., & Ueffing, M. (2009). The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. Journal of Neurochemistry, 109, 959–968.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, M. S., Pisani, A., Haburcak, M., Vortherms, T. A., Kitada, T., Costa, C., Tong, Y., Martella, G., Tscherter, A., Martins, A., Bernardi, G., Roth, B. L., Pothos, E. N., Calabresi, P., & Shen, J. (2005). Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1. Neuron, 45, 489–496.

    Article  CAS  PubMed  Google Scholar 

  • Goldberg, M. S., Fleming, S. M., Palacino, J. J., Cepeda, C., Lam, H. A., Bhatnagar, A., Meloni, E. G., Wu, N., Ackerson, L. C., Klapstein, G. J., Gajendiran, M., Roth, B. L., Chesselet, M. F., Maidment, N. T., Levine, M. S., & Shen, J. (2003). Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. The Journal of Biological Chemistry, 278, 43628–43635.

    Article  CAS  PubMed  Google Scholar 

  • Goldwurm, S., Di Fonzo, A., Simons, E. J., Rohe, C. F., Zini, M., Canesi, M., Tesei, S., Zecchinelli, A., Antonini, A., Mariani, C., Meucci, N., Sacilotto, G., Sironi, F., Salani, G., Ferreira, J., Chien, H. F., Fabrizio, E., Vanacore, N., Dalla Libera, A., Stocchi, F., Diroma, C., Lamberti, P., Sampaio, C., Meco, G., Barbosa, E., Bertoli-Avella, A. M., Breedveld, G. J., Oostra, B. A., Pezzoli, G., & Bonifati, V. (2005). The G6055A (G2019S) mutation in LRRK2 is frequent in both early and late onset Parkinson’s disease and originates from a common ancestor. Journal of Medical Genetics, 42, e65.

    Article  CAS  PubMed  Google Scholar 

  • Gubellini, P., Picconi, B., Bari, M., Battista, N., Calabresi, P., Centonze, D., Bernardi, G., Finazzi-Agro, A., & Maccarrone, M. (2002). Experimental Parkinsonism alters endocannabinoid degradation: Implications for striatal glutamatergic transmission. The Journal of Neuroscience, 22, 6900–6907.

    CAS  PubMed  Google Scholar 

  • Guo, L., Wang, W., & Chen, S. G. (2006). Leucine-rich repeat kinase 2: Relevance to Parkinson’s disease. The International Journal of Biochemistry & Cell Biology, 38, 1469–1475.

    Article  CAS  Google Scholar 

  • Hallett, P. J., Dunah, A. W., Ravenscroft, P., Zhou, S., Bezard, E., Crossman, A. R., Brotchie, J. M., & Standaert, D. G. (2005). Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson’s disease. Neuropharmacology, 48, 503–516.

    Article  CAS  PubMed  Google Scholar 

  • Healy, D. G., Wood, N. W., & Schapira, A. H. (2008). Test for LRRK2 mutations in patients with Parkinson’s disease. Practical Neurology, 8, 381–385.

    Article  CAS  PubMed  Google Scholar 

  • Healy, D. G., Abou-Sleiman, P. M., Valente, E. M., Gilks, W. P., Bhatia, K., Quinn, N., Lees, A. J., & Wood, N. W. (2004). DJ-1 mutations in Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 75, 144–145.

    Article  CAS  PubMed  Google Scholar 

  • Higashi, S., Moore, D. J., Colebrooke, R. E., Biskup, S., Dawson, V. L., Arai, H., Dawson, T. M., & Emson, P. C. (2007a). Expression and localization of Parkinson’s disease-associated leucine-rich repeat kinase 2 in the mouse brain. Journal of Neurochemistry, 100, 368–381.

    Article  CAS  PubMed  Google Scholar 

  • Higashi, S., Biskup, S., West, A. B., Trinkaus, D., Dawson, V. L., Faull, R. L., Waldvogel, H. J., Arai, H., Dawson, T. M., Moore, D. J., & Emson, P. C. (2007b). Localization of Parkinson’s disease-associated LRRK2 in normal and pathological human brain. Brain Research, 1155, 208–219.

    Article  CAS  PubMed  Google Scholar 

  • Imai, Y., Gehrke, S., Wang, H. Q., Takahashi, R., Hasegawa, K., Oota, E., & Lu, B. (2008). Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. The EMBO Journal, 27, 2432–2443.

    Article  CAS  PubMed  Google Scholar 

  • Jaleel, M., Nichols, R. J., Deak, M., Campbell, D. G., Gillardon, F., Knebel, A., & Alessi, D. R. (2007). LRRK2 phosphorylates moesin at threonine-558: Characterization of how Parkinson’s disease mutants affect kinase activity. The Biochemical Journal, 405, 307–317.

    Article  CAS  PubMed  Google Scholar 

  • Jankovic, J. (2008). Parkinson’s disease: Clinical features and diagnosis. Journal of Neurology, Neurosurgery, and Psychiatry, 79, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Jenner, P., & Marsden, C. D. (1986). The actions of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in animals as a model of Parkinson’s disease. Journal of Neural Transmission: Supplementum, 20, 11–39.

    CAS  Google Scholar 

  • Kehagia, A. A., Barker, R. A., & Robbins, T. W. (2010). Neuropsychological and clinical heterogeneity of cognitive impairment and dementia in patients with Parkinson’s disease. Lancet Neurology, 9, 1200–1213.

    Article  PubMed  Google Scholar 

  • Kennedy, M. B. (2000). Signal-processing machines at the postsynaptic density. Science, 290, 750–754.

    Article  CAS  PubMed  Google Scholar 

  • Kim, E., & Sheng, M. (2004). PDZ domain proteins of synapses. Nature Reviews: Neuroscience, 5, 771–781.

    Article  CAS  PubMed  Google Scholar 

  • Kitada, T., Pisani, A., Porter, D. R., Yamaguchi, H., Tscherter, A., Martella, G., Bonsi, P., Zhang, C., Pothos, E. N., & Shen, J. (2007). Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 104, 11441–11446.

    Article  CAS  PubMed  Google Scholar 

  • Kurz, A., Double, K. L., Lastres-Becker, I., Tozzi, A., Tantucci, M., Bockhart, V., Bonin, M., Garcia-Arencibia, M., Nuber, S., Schlaudraff, F., Liss, B., Fernandez-Ruiz, J., Gerlach, M., Wullner, U., Luddens, H., Calabresi, P., Auburger, G., & Gispert, S. (2010). A53T-alpha-synuclein overexpression impairs dopamine signaling and striatal synaptic plasticity in old mice. PLoS One, 5, e11464.

    Article  PubMed  CAS  Google Scholar 

  • Lai, S. K., Tse, Y. C., Yang, M. S., Wong, C. K., Chan, Y. S., & Yung, K. K. (2003). Gene expression of glutamate receptors GluR1 and NR1 is differentially modulated in striatal neurons in rats after 6-hydroxydopamine lesion. Neurochemistry International, 43, 639–653.

    Article  CAS  PubMed  Google Scholar 

  • Lang, A. E., & Lozano, A. M. (1998a). Parkinson’s disease. Second of two parts. The New England Journal of Medicine, 339, 1130–1143.

    Article  CAS  PubMed  Google Scholar 

  • Lang, A. E., & Lozano, A. M. (1998b). Parkinson’s disease. First of two parts. The New England Journal of Medicine, 339, 1044–1053.

    Article  CAS  PubMed  Google Scholar 

  • Lavedan, C. (1998). The synuclein family. Genome Research, 8, 871–880.

    CAS  PubMed  Google Scholar 

  • Le, W. D., Xu, P., Jankovic, J., Jiang, H., Appel, S. H., Smith, R. G., & Vassilatis, D. K. (2003). Mutations in NR4A2 associated with familial Parkinson disease. Nature Genetics, 33, 85–89.

    Article  CAS  PubMed  Google Scholar 

  • Lee, C. Y., Lee, C. H., Shih, C. C., & Liou, H. H. (2008). Paraquat inhibits postsynaptic AMPA receptors on dopaminergic neurons in the substantia nigra pars compacta. Biochemical Pharmacology, 76, 1155–1164.

    Article  CAS  PubMed  Google Scholar 

  • Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., Mezey, E., Harta, G., Brownstein, M. J., Jonnalagada, S., Chernova, T., Dehejia, A., Lavedan, C., Gasser, T., Steinbach, P. J., Wilkinson, K. D., & Polymeropoulos, M. H. (1998). The ubiquitin pathway in Parkinson’s disease. Nature, 395, 451–452.

    Article  CAS  PubMed  Google Scholar 

  • Lesage, S., Leutenegger, A. L., Ibanez, P., Janin, S., Lohmann, E., Durr, A., & Brice, A. (2005). LRRK2 haplotype analyses in European and North African families with Parkinson disease: A common founder for the G2019S mutation dating from the 13th century. The American Society of Human Genetics, 77, 330–332.

    Article  CAS  Google Scholar 

  • Li, X., Patel, J. C., Wang, J., Avshalumov, M. V., Nicholson, C., Buxbaum, J. D., Elder, G. A., Rice, M. E., & Yue, Z. (2010). Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. The Journal of Neuroscience, 30, 1788–1797.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Liu, W., Oo, T. F., Wang, L., Tang, Y., Jackson-Lewis, V., Zhou, C., Geghman, K., Bogdanov, M., Przedborski, S., Beal, M. F., Burke, R. E., & Li, C. (2009). Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nature Neuroscience, 12, 826–828.

    Article  CAS  PubMed  Google Scholar 

  • Lin, X., Parisiadou, L., Gu, X. L., Wang, L., Shim, H., Sun, L., Xie, C., Long, C. X., Yang, W. J., Ding, J., Chen, Z. Z., Gallant, P. E., Tao-Cheng, J. H., Rudow, G., Troncoso, J. C., Liu, Z., Li, Z., & Cai, H. (2009). Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron, 64, 807–827.

    Article  CAS  PubMed  Google Scholar 

  • Lovinger, D. M., Tyler, E. C., & Merritt, A. (1993). Short- and long-term synaptic depression in rat neostriatum. Journal of Neurophysiology, 70, 1937–1949.

    CAS  PubMed  Google Scholar 

  • Mahon, S., Deniau, J. M., & Charpier, S. (2004). Corticostriatal plasticity: Life after the depression. Trends in Neurosciences, 27, 460–467.

    Article  CAS  PubMed  Google Scholar 

  • Malenka, R. C., & Bear, M. F. (2004). LTP and LTD: An embarrassment of riches. Neuron, 44, 5–21.

    Article  CAS  PubMed  Google Scholar 

  • Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science, 298, 1912–1934.

    Article  CAS  PubMed  Google Scholar 

  • Marin, I. (2006). The Parkinson disease gene LRRK2: Evolutionary and structural insights. Molecular Biology and Evolution, 23, 2423–2433.

    Article  CAS  PubMed  Google Scholar 

  • Marx, F. P., Holzmann, C., Strauss, K. M., Li, L., Eberhardt, O., Gerhardt, E., Cookson, M. R., Hernandez, D., Farrer, M. J., Kachergus, J., Engelender, S., Ross, C. A., Berger, K., Schols, L., Schulz, J. B., Riess, O., & Kruger, R. (2003). Identification and functional characterization of a novel R621C mutation in the synphilin-1 gene in Parkinson’s disease. Human Molecular Genetics, 12, 1223–1231.

    Article  CAS  PubMed  Google Scholar 

  • Mata, I. F., Kachergus, J. M., Taylor, J. P., Lincoln, S., Aasly, J., Lynch, T., Hulihan, M. M., Cobb, S. A., Wu, R. M., Lu, C. S., Lahoz, C., Wszolek, Z. K., & Farrer, M. J. (2005). Lrrk2 pathogenic substitutions in Parkinson’s disease. Neurogenetics, 6, 171–177.

    Article  CAS  PubMed  Google Scholar 

  • Meixner, A., Boldt, K., Van Troys, M., Askenazi, M., Gloeckner, C. J., Bauer, M., Marto, J. A., Ampe, C., Kinkl, N., & Ueffing, M. (2010). A QUICK screen for Lrrk2 interaction partners–leucine-rich repeat kinase 2 is involved in actin cytoskeleton dynamics. Molecular and Cellular Proteomics, 10, M110 001172.

    PubMed  Google Scholar 

  • Melrose, H., Lincoln, S., Tyndall, G., Dickson, D., & Farrer, M. (2006). Anatomical localization of leucine-rich repeat kinase 2 in mouse brain. Neuroscience, 139, 791–794.

    Article  CAS  PubMed  Google Scholar 

  • Moore, D. J. (2008). The biology and pathobiology of LRRK2: Implications for Parkinson’s disease. Parkinsonism & Related Disorders, 14(Suppl 2), S92–98.

    Article  Google Scholar 

  • Moore, D. J., Dawson, V. L., & Dawson, T. M. (2006). Lessons from Drosophila models of DJ-1 deficiency. Science of Aging Knowledge Environment, 2006, pe2.

    Article  PubMed  Google Scholar 

  • Murphy, D. D., Rueter, S. M., Trojanowski, J. Q., & Lee, V. M. (2000). Synucleins are developmentally expressed, and alpha-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. The Journal of Neuroscience, 20, 3214–3220.

    CAS  PubMed  Google Scholar 

  • Nash, J. E., Johnston, T. H., Collingridge, G. L., Garner, C. C., & Brotchie, J. M. (2005). Subcellular redistribution of the synapse-associated proteins PSD-95 and SAP97 in animal models of Parkinson’s disease and L-DOPA-induced dyskinesia. The FASEB Journal, 19, 583–585.

    CAS  Google Scholar 

  • Nemani, V. M., Lu, W., Berge, V., Nakamura, K., Onoa, B., Lee, M. K., Chaudhry, F. A., Nicoll, R. A., & Edwards, R. H. (2010). Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron, 65, 66–79.

    Article  CAS  PubMed  Google Scholar 

  • Nishi, M., Hinds, H., Lu, H. P., Kawata, M., & Hayashi, Y. (2001). Motoneuron-specific expression of NR3B, a novel NMDA-type glutamate receptor subunit that works in a dominant-negative manner. The Journal of Neuroscience, 21, RC185.

    CAS  PubMed  Google Scholar 

  • Nussbaum, R. L., & Polymeropoulos, M. H. (1997). Genetics of Parkinson’s disease. Human Molecular Genetics, 6, 1687–1691.

    Article  CAS  PubMed  Google Scholar 

  • O’Dell, T. J., & Kandel, E. R. (1994). Low-frequency stimulation erases LTP through an NMDA receptor-mediated activation of protein phosphatases. Learning & Memory, 1, 129–139.

    Google Scholar 

  • Oh, J. D., Vaughan, C. L., & Chase, T. N. (1999). Effect of dopamine denervation and dopamine agonist administration on serine phosphorylation of striatal NMDA receptor subunits. Brain Research, 821, 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Paille, V., Picconi, B., Bagetta, V., Ghiglieri, V., Sgobio, C., Di Filippo, M., Viscomi, M. T., Giampa, C., Fusco, F. R., Gardoni, F., Bernardi, G., Greengard, P., Di Luca, M., & Calabresi, P. (2010). Distinct levels of dopamine denervation differentially alter striatal synaptic plasticity and NMDA receptor subunit composition. The Journal of Neuroscience, 30, 14182–14193.

    Article  CAS  PubMed  Google Scholar 

  • Paisan-Ruiz, C., Nath, P., Washecka, N., Gibbs, J. R., & Singleton, A. B. (2008). Comprehensive analysis of LRRK2 in publicly available Parkinson’s disease cases and neurologically normal controls. Human Mutation, 29, 485–490.

    Article  CAS  PubMed  Google Scholar 

  • Paisan-Ruiz, C., Jain, S., Evans, E. W., Gilks, W. P., Simon, J., van der Brug, M., Lopez de Munain, A., Aparicio, S., Gil, A. M., Khan, N., Johnson, J., Martinez, J. R., Nicholl, D., Carrera, I. M., Pena, A. S., de Silva, R., Lees, A., Marti-Masso, J. F., Perez-Tur, J., Wood, N. W., & Singleton, A. B. (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron, 44, 595–600.

    Article  CAS  PubMed  Google Scholar 

  • Partridge, J. G., Tang, K. C., & Lovinger, D. M. (2000). Regional and postnatal heterogeneity of activity-dependent long-term changes in synaptic efficacy in the dorsal striatum. Journal of Neurophysiology, 84, 1422–1429.

    CAS  PubMed  Google Scholar 

  • Piccoli, G., Condliffe, S. B., Bauer, M., Giesert, F., Boldt, K., De Astis, S., Meixner, A., Sarioglu, H., Vogt-Weisenhorn, D. M., Wurst, W., Gloeckner, C. J., Matteoli, M., Sala, C., & Ueffing, M. (2011). LRRK2 controls synaptic vesicle storage and mobilization within the recycling pool. The Journal of Neuroscience, 31, 2225–2237.

    Article  CAS  PubMed  Google Scholar 

  • Picconi, B., Centonze, D., Hakansson, K., Bernardi, G., Greengard, P., Fisone, G., Cenci, M. A., & Calabresi, P. (2003). Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nature Neuroscience, 6, 501–506.

    CAS  PubMed  Google Scholar 

  • Picconi, B., Gardoni, F., Centonze, D., Mauceri, D., Cenci, M. A., Bernardi, G., Calabresi, P., & Di Luca, M. (2004). Abnormal Ca2 + −calmodulin-dependent protein kinase II function mediates synaptic and motor deficits in experimental parkinsonism. The Journal of Neuroscience, 24, 5283–5291.

    Article  CAS  PubMed  Google Scholar 

  • Polymeropoulos, M. H., Lavedan, C., Leroy, E., Ide, S. E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E. S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W. G., Lazzarini, A. M., Duvoisin, R. C., Di Iorio, G., Golbe, L. I., & Nussbaum, R. L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science, 276, 2045–2047.

    Article  CAS  PubMed  Google Scholar 

  • Qing, H., Wong, W., McGeer, E. G., & McGeer, P. L. (2009). Lrrk2 phosphorylates alpha synuclein at serine 129: Parkinson disease implications. Biochemical and Biophysical Research Communications, 387, 149–152.

    Article  CAS  PubMed  Google Scholar 

  • Quik, M., Chen, L., Parameswaran, N., Xie, X., Langston, J. W., & McCallum, S. E. (2006). Chronic oral nicotine normalizes dopaminergic function and synaptic plasticity in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned primates. The Journal of Neuroscience, 26, 4681–4689.

    Article  CAS  PubMed  Google Scholar 

  • Raju, D. V., Ahern, T. H., Shah, D. J., Wright, T. M., Standaert, D. G., Hall, R. A., & Smith, Y. (2008). Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTP-treated monkey model of parkinsonism. European Journal of Neuroscience, 27, 1647–1658.

    Article  PubMed  Google Scholar 

  • Reynolds, J. N., & Wickens, J. R. (2000). Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum, in vivo. Neuroscience, 99, 199–203.

    Article  CAS  PubMed  Google Scholar 

  • Rizo, J., & Rosenmund, C. (2008). Synaptic vesicle fusion. Nature Structural and Molecular Biology, 15, 665–674.

    Article  CAS  PubMed  Google Scholar 

  • Schulz-Schaeffer, W. J. (2010). The synaptic pathology of alpha-synuclein aggregation in dementia with Lewy bodies, Parkinson’s disease and Parkinson’s disease dementia. Acta Neuropathologica, 120, 131–143.

    Article  CAS  PubMed  Google Scholar 

  • Schwarting, R. K., & Huston, J. P. (1996). The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Progress in Neurobiology, 50, 275–331.

    Article  CAS  PubMed  Google Scholar 

  • Selkoe, D. J. (2002). Alzheimer’s disease is a synaptic failure. Science, 298, 789–791.

    Article  CAS  PubMed  Google Scholar 

  • Shendelman, S., Jonason, A., Martinat, C., Leete, T., & Abeliovich, A. (2004). DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formation. PLoS Biology, 2, e362.

    Article  PubMed  CAS  Google Scholar 

  • Shin, N., Jeong, H., Kwon, J., Heo, H. Y., Kwon, J. J., Yun, H. J., Kim, C. H., Han, B. S., Tong, Y., Shen, J., Hatano, T., Hattori, N., Kim, K. S., Chang, S., & Seol, W. (2008). LRRK2 regulates synaptic vesicle endocytosis. Experimental Cell Research, 314, 2055–2065.

    Article  CAS  PubMed  Google Scholar 

  • Sidhu, A., Wersinger, C., & Vernier, P. (2004). Does alpha-synuclein modulate dopaminergic synaptic content and tone at the synapse? The FASEB Journal, 18, 637–647.

    Article  CAS  Google Scholar 

  • Silvestri, L., Caputo, V., Bellacchio, E., Atorino, L., Dallapiccola, B., Valente, E. M., & Casari, G. (2005). Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Human Molecular Genetics, 14, 3477–3492.

    Article  CAS  PubMed  Google Scholar 

  • Simon-Sanchez, J., Schulte, C., Bras, J. M., Sharma, M., Gibbs, J. R., Berg, D., Paisan-Ruiz, C., Lichtner, P., Scholz, S. W., Hernandez, D. G., Kruger, R., Federoff, M., Klein, C., Goate, A., Perlmutter, J., Bonin, M., Nalls, M. A., Illig, T., Gieger, C., Houlden, H., Steffens, M., Okun, M. S., Racette, B. A., Cookson, M. R., Foote, K. D., Fernandez, H. H., Traynor, B. J., Schreiber, S., Arepalli, S., Zonozi, R., Gwinn, K., van der Brug, M., Lopez, G., Chanock, S. J., Schatzkin, A., Park, Y., Hollenbeck, A., Gao, J., Huang, X., Wood, N. W., Lorenz, D., Deuschl, G., Chen, H., Riess, O., Hardy, J. A., Singleton, A. B., & Gasser, T. (2009). Genome-wide association study reveals genetic risk underlying Parkinson’s disease. Nature Genetics, 41, 1308–1312.

    Article  CAS  PubMed  Google Scholar 

  • Singleton, A. B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M. R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J., & Gwinn-Hardy, K. (2003). Alpha-Synuclein locus triplication causes Parkinson’s disease. Science, 302, 841.

    Article  CAS  PubMed  Google Scholar 

  • Smith, A. D., Castro, S. L., & Zigmond, M. J. (2002). Stress-induced Parkinson’s disease: A working hypothesis. Physiology and Behavior, 77, 527–531.

    Article  CAS  PubMed  Google Scholar 

  • Sossi, V., de la Fuente-Fernandez, R., Nandhagopal, R., Schulzer, M., McKenzie, J., Ruth, T. J., Aasly, J. O., Farrer, M. J., Wszolek, Z. K., & Stoessl, J. A. (2010). Dopamine turnover increases in asymptomatic LRRK2 mutations carriers. Movement Disorders, 25, 2717–2723.

    Article  PubMed  Google Scholar 

  • Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., & Goedert, M. (1998). Alpha-Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with lewy bodies. Proceedings of the National Academy of Sciences of the United States of America, 95, 6469–6473.

    Article  CAS  PubMed  Google Scholar 

  • Strack, S., McNeill, R. B., & Colbran, R. J. (2000). Mechanism and regulation of calcium/calmodulin-dependent protein kinase II targeting to the NR2B subunit of the N-methyl-D-aspartate receptor. The Journal of Biological Chemistry, 275, 23798–23806.

    Article  CAS  PubMed  Google Scholar 

  • Sudhof, T. C., & Rothman, J. E. (2009). Membrane fusion: Grappling with SNARE and SM proteins. Science, 323, 474–477.

    Article  PubMed  CAS  Google Scholar 

  • Taylor, J. P., Mata, I. F., & Farrer, M. J. (2006). LRRK2: A common pathway for parkinsonism, pathogenesis and prevention? Trends in Molecular Medicine, 12, 76–82.

    Article  CAS  PubMed  Google Scholar 

  • Taymans, J. M., & Cookson, M. R. (2010). Mechanisms in dominant parkinsonism: The toxic triangle of LRRK2, alpha-synuclein, and tau. Bioessays, 32, 227–235.

    Article  CAS  PubMed  Google Scholar 

  • Tong, Y., Pisani, A., Martella, G., Karouani, M., Yamaguchi, H., Pothos, E. N., & Shen, J. (2009). R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proceedings of the National Academy of Sciences of the United States of America, 106, 14622–14627.

    Article  CAS  PubMed  Google Scholar 

  • Turner, K. M., Burgoyne, R. D., & Morgan, A. (1999). Protein phosphorylation and the regulation of synaptic membrane traffic. Trends in Neurosciences, 22, 459–464.

    Article  CAS  PubMed  Google Scholar 

  • Ulas, J., & Cotman, C. W. (1996). Dopaminergic denervation of striatum results in elevated expression of NR2A subunit. Neuroreport, 7, 1789–1793.

    Article  CAS  PubMed  Google Scholar 

  • Valente, E. M., Abou-Sleiman, P. M., Caputo, V., Muqit, M. M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A. R., Healy, D. G., Albanese, A., Nussbaum, R., Gonzalez-Maldonado, R., Deller, T., Salvi, S., Cortelli, P., Gilks, W. P., Latchman, D. S., Harvey, R. J., Dallapiccola, B., Auburger, G., & Wood, N. W. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science, 304, 1158–1160.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, J. P. (1993). Depression of excitatory synaptic input in rat striatal neurons. Brain Research, 608, 123–128.

    Article  CAS  PubMed  Google Scholar 

  • Walsh, J. P., & Dunia, R. (1993). Synaptic activation of N-methyl-D-aspartate receptors induces short-term potentiation at excitatory synapses in the striatum of the rat. Neuroscience, 57, 241–248.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Chandran, J. S., Cai, H., & Mattson, M. P. (2008). DJ-1 is essential for long-term depression at hippocampal CA1 synapses. Neuromolecular Medicine, 10, 40–45.

    Article  CAS  PubMed  Google Scholar 

  • Whaley, N. R., Uitti, R. J., Dickson, D. W., Farrer, M. J., & Wszolek, Z. K. (2006). Clinical and pathologic features of families with LRRK2-associated Parkinson’s disease. Journal of Neural Transmission. Supplementum, 70, 221–229.

    Article  CAS  PubMed  Google Scholar 

  • Wider, C., Dickson, D. W., & Wszolek, Z. K. (2010). Leucine-rich repeat kinase 2 gene-associated disease: redefining genotype-phenotype correlation. Neurodegenerative Diseases, 7, 175–179.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, M. A., St Amour, C. V., Collins, J. L., Ringe, D., & Petsko, G. A. (2004). The 1.8-A resolution crystal structure of YDR533Cp from Saccharomyces cerevisiae: a member of the DJ-1/ThiJ/PfpI superfamily. Proceedings of the National Academy of Sciences of the United States of America, 101, 1531–1536.

    Article  CAS  PubMed  Google Scholar 

  • Wishart TM, Parson SH, Gillingwater TH. (2006). Synaptic vulnerability in neurodegenerative disease. Journal of Neuropathology and Experimental Neurology, 65, 733–739.

    Article  Google Scholar 

  • Xiong, H., Wang, D., Chen, L., Choo, Y. S., Ma, H., Tang, C., Xia, K., Jiang, W., Ronai, Z., Zhuang, X., & Zhang, Z. (2009). Parkin, PINK1, and DJ-1 form a ubiquitin E3 ligase complex promoting unfolded protein degradation. The Journal of Clinical Investigation, 119, 650–660.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, Y., Coombes, C. E., Kilaru, A., Li, X., Gitler, A. D., Bowers, W. J., Dawson, V. L., Dawson, T. M., & Moore, D. J. (2010). GTPase activity plays a key role in the pathobiology of LRRK2. PLoS Genetics, 6, e1000902.

    Article  PubMed  CAS  Google Scholar 

  • Yao, I., Takagi, H., Ageta, H., Kahyo, T., Sato, S., Hatanaka, K., Fukuda, Y., Chiba, T., Morone, N., Yuasa, S., Inokuchi, K., Ohtsuka, T., Macgregor, G. R., Tanaka, K., & Setou, M. (2007). SCRAPPER-dependent ubiquitination of active zone protein RIM1 regulates synaptic vesicle release. Cell, 130, 943–957.

    Article  CAS  PubMed  Google Scholar 

  • Yu, S., Ueda, K., & Chan, P. (2005). Alpha-synuclein and dopamine metabolism. Molecular Neurobiology, 31, 243–254.

    Article  CAS  PubMed  Google Scholar 

  • Yu, S., Li, X., Liu, G., Han, J., Zhang, C., Li, Y., Xu, S., Liu, C., Gao, Y., Yang, H., Ueda, K., & Chan, P. (2007). Extensive nuclear localization of alpha-synuclein in normal rat brain neurons revealed by a novel monoclonal antibody. Neuroscience, 145, 539–555.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, L., Shimoji, M., Thomas, B., Moore, D. J., Yu, S. W., Marupudi, N. I., Torp, R., Torgner, I. A., Ottersen, O. P., Dawson, T. M., & Dawson, V. L. (2005). Mitochondrial localization of the Parkinson’s disease related protein DJ-1: Implications for pathogenesis. Human Molecular Genetics, 14, 2063–2073.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, C., Huang, Y., Shao, Y., May, J., Prou, D., Perier, C., Dauer, W., Schon, E. A., & Przedborski, S. (2008). The kinase domain of mitochondrial PINK1 faces the cytoplasm. Proceedings of the National Academy of Sciences of the United States of America, 105, 12022–12027.

    Article  CAS  PubMed  Google Scholar 

  • Zigmond, M. J., Hastings, T. G., & Perez, R. G. (2002). Increased dopamine turnover after partial loss of dopaminergic neurons: Compensation or toxicity? Parkinsonism & Related Disorders, 8, 389–393.

    Article  Google Scholar 

  • Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R. J., Calne, D. B., Stoessl, A. J., Pfeiffer, R. F., Patenge, N., Carbajal, I. C., Vieregge, P., Asmus, F., Muller-Myhsok, B., Dickson, D. W., Meitinger, T., Strom, T. M., Wszolek, Z. K., & Gasser, T. (2004). Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 44, 601–607.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Calabresi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/WIen

About this chapter

Cite this chapter

Picconi, B., Piccoli, G., Calabresi, P. (2012). Synaptic Dysfunction in Parkinson’s Disease. In: Kreutz, M., Sala, C. (eds) Synaptic Plasticity. Advances in Experimental Medicine and Biology, vol 970. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0932-8_24

Download citation

Publish with us

Policies and ethics