Skip to main content

Cross Talk Between Ceramide and Redox Signaling: Implications for Endothelial Dysfunction and Renal Disease

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 216))

Abstract

Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where transmembrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial–temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Allen JA, Halverson-Tamboli RA, Rasenick MM (2007) Lipid raft microdomains and neurotransmitter signalling. Nat Rev 8:128–140

    CAS  Google Scholar 

  • Ayuyan AG, Cohen FS (2006) Lipid peroxides promote large rafts: effects of excitation of probes in fluorescence microscopy and electrochemical reactions during vesicle formation. Biophys J 91:2172–2183

    PubMed  CAS  Google Scholar 

  • Azad N, Rojanasakul Y, Vallyathan V (2008) Inflammation and lung cancer: roles of reactive oxygen/nitrogen species. J Toxicol Environ Health 11:1–15

    CAS  Google Scholar 

  • Azad MB, Chen Y, Gibson SB (2009) Regulation of autophagy by reactive oxygen species (ROS): implications for cancer progression and treatment. Antioxid Redox Signal 11:777–790

    PubMed  CAS  Google Scholar 

  • Babior BM, Lambeth JD, Nauseef W (2002) The neutrophil NADPH oxidase. Arch Biochem Biophys 397:342–344

    PubMed  CAS  Google Scholar 

  • Bagi Z, Feher A, Beleznai T (2009) Preserved coronary arteriolar dilatation in patients with type 2 diabetes mellitus: implications for reactive oxygen species. Pharmacol Rep 61:99–104

    PubMed  CAS  Google Scholar 

  • Bao JX, Jin S, Zhang F, Wang ZC, Li N, Li PL (2010a) Activation of membrane NADPH oxidase associated with lysosome-targeted acid sphingomyelinase in coronary endothelial cells. Antioxid Redox Signal 12:703–712

    PubMed  CAS  Google Scholar 

  • Bao JX, Xia M, Poklis JL, Han WQ, Brimson C, Li PL (2010b) Triggering role of acid sphingomyelinase in endothelial lysosome-membrane fusion and dysfunction in coronary arteries. Am J Physiol Heart Circ Physiol 298:H992–H1002

    PubMed  CAS  Google Scholar 

  • Bell EL, Chandel NS (2007) Mitochondrial oxygen sensing: regulation of hypoxia-inducible factor by mitochondrial generated reactive oxygen species. Essays Biochem 43:17–27

    PubMed  CAS  Google Scholar 

  • Bezombes C, de Thonel A, Apostolou A, Louat T, Jaffrezou JP, Laurent G et al (2002) Overexpression of protein kinase Czeta confers protection against antileukemic drugs by inhibiting the redox-dependent sphingomyelinase activation. Mol Pharmacol 62:1446–1455

    PubMed  CAS  Google Scholar 

  • Bhunia AK, Han H, Snowden A, Chatterjee S (1997) Redox-regulated signaling by lactosylceramide in the proliferation of human aortic smooth muscle cells. J Biol Chem 272:15642–15649

    PubMed  CAS  Google Scholar 

  • Blair A, Shaul PW, Yuhanna IS, Conrad PA, Smart EJ (1999) Oxidized low density lipoprotein displaces endothelial nitric-oxide synthase (eNOS) from plasmalemmal caveolae and impairs eNOS activation. J Biol Chem 274:32512–32519

    PubMed  CAS  Google Scholar 

  • Blank U, Cyprien B, Martin-Verdeaux S, Paumet F, Pombo I, Rivera J et al (2002) SNAREs and associated regulators in the control of exocytosis in the RBL-2H3 mast cell line. Mol Immunol 38:1341–1345

    PubMed  CAS  Google Scholar 

  • Brown DA, London E (1998) Structure and origin of ordered lipid domains in biological membranes. J Membr Biol 164:103–114

    PubMed  CAS  Google Scholar 

  • Brown DL, Doubilet PM, Miller FH, Frates MC, Laing FC, DiSalvo DN et al (1998) Benign and malignant ovarian masses: selection of the most discriminating gray-scale and Doppler sonographic features. Radiology 208:103–110

    PubMed  CAS  Google Scholar 

  • Burdon RH (1996) Control of cell proliferation by reactive oxygen species. Biochem Soc Trans 24:1028–1032

    PubMed  CAS  Google Scholar 

  • Byfield FJ, Tikku S, Rothblat GH, Gooch KJ, Levitan I (2006) OxLDL increases endothelial stiffness, force generation, and network formation. J Lipid Res 47:715–723

    PubMed  CAS  Google Scholar 

  • Cai H (2006) A new mechanism for flow-mediated vasoprotection? Focus on “lung endothelial cell proliferation with decreased shear stress is mediated by reactive oxygen species”. Am J Physiol 290:C35–C36

    CAS  Google Scholar 

  • Casadesus G, Smith MA, Zhu X, Aliev G, Cash AD, Honda K et al (2004) Alzheimer disease: evidence for a central pathogenic role of iron-mediated reactive oxygen species. J Alzheimers Dis 6:165–169

    PubMed  CAS  Google Scholar 

  • Charruyer A, Grazide S, Bezombes C, Muller S, Laurent G, Jaffrezou JP (2005) UV-C light induces raft-associated acid sphingomyelinase and JNK activation and translocation independently on a nuclear signal. J Biol Chem 280:19196–19204

    PubMed  CAS  Google Scholar 

  • Chatterjee M, Wu S (2001) Cell line dependent involvement of ceramide in ultraviolet light-induced apoptosis. Mol Cell Biochem 219:21–27

    PubMed  CAS  Google Scholar 

  • Cheng G, Cao Z, Xu X, van Meir EG, Lambeth JD (2001) Homologs of gp91phox: cloning and tissue expression of Nox3, Nox4, and Nox5. Gene 269:131–140

    PubMed  CAS  Google Scholar 

  • Colavitti R, Finkel T (2005) Reactive oxygen species as mediators of cellular senescence. IUBMB Life 57:277–281

    PubMed  CAS  Google Scholar 

  • Corda S, Laplace C, Vicaut E, Duranteau J (2001) Rapid reactive oxygen species production by mitochondria in endothelial cells exposed to tumor necrosis factor-alpha is mediated by ceramide. Am J Respir Cell Mol Biol 24:762–768

    PubMed  CAS  Google Scholar 

  • Cremesti AE, Goni FM, Kolesnick R (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett 531:47–53

    PubMed  CAS  Google Scholar 

  • Dang PM, Cross AR, Quinn MT, Babior BM (2002) Assembly of the neutrophil respiratory burst oxidase: a direct interaction between p67PHOX and cytochrome b558 II. Proc Natl Acad Sci USA 99:4262–4265

    PubMed  CAS  Google Scholar 

  • Del Prete A, Zaccagnino P, Di Paola M, Saltarella M, Oliveros Celis C, Nico B et al (2008) Role of mitochondria and reactive oxygen species in dendritic cell differentiation and functions. Free Radic Biol Med 44:1443–1451

    PubMed  Google Scholar 

  • Delles C, Miller WH, Dominiczak AF (2008) Targeting reactive oxygen species in hypertension. Antioxid Redox Signal 10:1061–1077

    PubMed  CAS  Google Scholar 

  • Dumitru CA, Gulbins E (2006) TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis. Oncogene 25:5612–5625

    PubMed  CAS  Google Scholar 

  • Dumitru CA, Zhang Y, Li X, Gulbins E (2007) Ceramide: a novel player in reactive oxygen species-induced signaling? Antioxid Redox Signal 9:1535–1540

    PubMed  CAS  Google Scholar 

  • Dworakowski R, Anilkumar N, Zhang M, Shah AM (2006) Redox signalling involving NADPH oxidase-derived reactive oxygen species. Biochem Soc Trans 34:960–964

    PubMed  CAS  Google Scholar 

  • Eid AA, Gorin Y, Fagg BM, Maalouf R, Barnes JL, Block K et al (2009) Mechanisms of podocyte injury in diabetes: role of cytochrome P450 and NADPH oxidases. Diabetes 58:1201–1211

    PubMed  CAS  Google Scholar 

  • Feuk-Lagerstedt E, Movitz C, Pellme S, Dahlgren C, Karlsson A (2007) Lipid raft proteome of the human neutrophil azurophil granule. Proteomics 7:194–205

    PubMed  CAS  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247

    PubMed  CAS  Google Scholar 

  • Flowers F, Zimmerman JJ (1998) Reactive oxygen species in the cellular pathophysiology of shock. New Horizons 6:169–180

    PubMed  CAS  Google Scholar 

  • Frey RS, Rahman A, Kefer JC, Minshall RD, Malik AB (2002) PKCzeta regulates TNF-alpha-induced activation of NADPH oxidase in endothelial cells. Circ Res 90:1012–1019

    PubMed  CAS  Google Scholar 

  • Fujimoto S, Satoh M, Horike H, Hatta H, Haruna Y, Kobayashi S et al (2008) Olmesartan ameliorates progressive glomerular injury in subtotal nephrectomized rats through suppression of superoxide production. Hypertens Res 31:305–313

    PubMed  CAS  Google Scholar 

  • Gendzwill A (2007a) Reactive oxygen species and vascular hyporeactivity in septic shock. Part II–Scavengers and vascular hyporeactivity in septic shock. Pol Merkur Lekarski 23:284–287

    PubMed  CAS  Google Scholar 

  • Gendzwill A (2007b) Reactive oxygen species and vascular hyporeactivity in septic shock. Part I–Reactive oxygen species and vascular hyporeactivity. Pol Merkur Lekarski 23:280–283

    PubMed  CAS  Google Scholar 

  • Gerst JE (1999) SNAREs and SNARE regulators in membrane fusion and exocytosis. Cell Mol Life Sci 55:707–734

    PubMed  CAS  Google Scholar 

  • Goswami SK, Maulik N, Das DK (2007) Ischemia-reperfusion and cardioprotection: a delicate balance between reactive oxygen species generation and redox homeostasis. Ann Med 39:275–289

    PubMed  CAS  Google Scholar 

  • Grassme H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K et al (2001) CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 276:20589–20596

    PubMed  CAS  Google Scholar 

  • Griendling KK, Sorescu D, Ushio-Fukai M (2000) NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86:494–501

    PubMed  CAS  Google Scholar 

  • Gulbins E, Grassme H (2002) Ceramide and cell death receptor clustering. Biochim Biophys Acta 1585:139–145

    PubMed  CAS  Google Scholar 

  • Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22:7070–7077

    PubMed  CAS  Google Scholar 

  • Guzy RD, Schumacker PT (2006) Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 91:807–819

    PubMed  CAS  Google Scholar 

  • Halliwell B, Cross CE (1994) Oxygen-derived species: their relation to human disease and environmental stress. Environ Health Perspect 102(Suppl 10):5–12

    PubMed  CAS  Google Scholar 

  • Han W, Li H, Villar VA, Pascua AM, Dajani MI, Wang X et al (2008) Lipid rafts keep NADPH oxidase in the inactive state in human renal proximal tubule cells. Hypertension 51:481–487

    PubMed  CAS  Google Scholar 

  • Hansberg W, de Groot H, Sies H (1993) Reactive oxygen species associated with cell differentiation in Neurospora crassa. Free Radic Biol Med 14:287–293

    PubMed  CAS  Google Scholar 

  • Hara T, Kondo N, Nakamura H, Okuyama H, Mitsui A, Hoshino Y et al (2007) Cell-surface thioredoxin-1: possible involvement in thiol-mediated leukocyte-endothelial cell interaction through lipid rafts. Antioxid Redox Signal 9:1427–1437

    PubMed  CAS  Google Scholar 

  • Hernandez OM, Discher DJ, Bishopric NH, Webster KA (2000) Rapid activation of neutral sphingomyelinase by hypoxia-reoxygenation of cardiac myocytes. Circ Res 86:198–204

    PubMed  CAS  Google Scholar 

  • Hildeman DA (2004) Regulation of T-cell apoptosis by reactive oxygen species. Free Radic Biol Med 36:1496–1504

    PubMed  CAS  Google Scholar 

  • Hirooka Y (2008) Role of reactive oxygen species in brainstem in neural mechanisms of hypertension. Auton Neurosci 142:20–24

    PubMed  CAS  Google Scholar 

  • Hoekstra D, Maier O, van der Wouden JM, Slimane TA, van ISC (2003) Membrane dynamics and cell polarity: the role of sphingolipids. J Lipid Res 44:869–877

    Google Scholar 

  • Jamaluddin M, Tian B, Boldogh I, Garofalo RP, Brasier AR (2009) Respiratory syncytial virus infection induces a reactive oxygen species-MSK1-phospho-Ser-276 RelA pathway required for cytokine expression. J Virol 83:10605–10615

    PubMed  CAS  Google Scholar 

  • Jin S, Yi F, Li PL (2007) Contribution of lysosomal vesicles to the formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 9:1417–1426

    PubMed  CAS  Google Scholar 

  • Jin S, Yi F, Zhang F, Poklis JL, Li PL (2008a) Lysosomal targeting and trafficking of acid sphingomyelinase to lipid raft platforms in coronary endothelial cells. Arterioscler Thromb Vasc Biol 28:2056–2062

    PubMed  CAS  Google Scholar 

  • Jin S, Zhang Y, Yi F, Li PL (2008b) Critical role of lipid raft redox signaling platforms in endostatin-induced coronary endothelial dysfunction. Arterioscler Thromb Vasc Biol 28:485–490

    PubMed  CAS  Google Scholar 

  • Jose PA, Eisner GM, Felder RA (2002) Role of dopamine receptors in the kidney in the regulation of blood pressure. Curr Opin Nephrol Hypertens 11:87–92

    PubMed  Google Scholar 

  • Kaushal GP, Singh AB, Shah SV (1998) Identification of gene family of caspases in rat kidney and altered expression in ischemia-reperfusion injury. Am J Physiol 274:F587–F595

    PubMed  CAS  Google Scholar 

  • Kietzmann T, Gorlach A (2005) Reactive oxygen species in the control of hypoxia-inducible factor-mediated gene expression. Semin Cell Dev Biol 16:474–486

    PubMed  CAS  Google Scholar 

  • Kojda G, Harrison D (1999) Interactions between NO and reactive oxygen species: pathophysiological importance in atherosclerosis, hypertension, diabetes and heart failure. Cardiovasc Res 43:562–571

    PubMed  CAS  Google Scholar 

  • Kondo N, Ishii Y, Kwon YW, Tanito M, Sakakura-Nishiyama J, Mochizuki M et al (2007) Lipid raft-mediated uptake of cysteine-modified thioredoxin-1: apoptosis enhancement by inhibiting the endogenous thioredoxin-1. Antioxid Redox Signal 9:1439–1448

    PubMed  CAS  Google Scholar 

  • Ksiazek K, Wisniewska J (2001) The role of glucose and reactive oxygen species in the development of vascular complications of diabetes mellitus. Przegl Lek 58:915–918

    PubMed  CAS  Google Scholar 

  • Kusmartsev S, Gabrilovich DI (2003) Inhibition of myeloid cell differentiation in cancer: the role of reactive oxygen species. J Leukoc Biol 74:186–196

    PubMed  CAS  Google Scholar 

  • Lang F, Lang KS, Lang PA, Huber SM, Wieder T (2006) Mechanisms and significance of eryptosis. Antioxid Redox Signal 8:1183–1192

    PubMed  CAS  Google Scholar 

  • Lang PA, Schenck M, Nicolay JP, Becker JU, Kempe DS, Lupescu A et al (2007) Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide. Nat Med 13:164–170

    PubMed  CAS  Google Scholar 

  • Lang F, Gulbins E, Lang PA, Zappulla D, Foller M (2010) Ceramide in suicidal death of erythrocytes. Cell Physiol Biochem 26:21–28

    PubMed  CAS  Google Scholar 

  • Lecour S, Van der Merwe E, Opie LH, Sack MN (2006) Ceramide attenuates hypoxic cell death via reactive oxygen species signaling. J Cardiovasc Pharmacol 47:158–163

    PubMed  CAS  Google Scholar 

  • Levitan I, Gooch KJ (2007) Lipid rafts in membrane-cytoskeleton interactions and control of cellular biomechanics: actions of oxLDL. Antioxid Redox Signal 9:1519–1534

    PubMed  CAS  Google Scholar 

  • Li PL, Gulbins E (2007) Lipid rafts and redox signaling. Antioxid Redox Signal 9:1411–1415

    PubMed  CAS  Google Scholar 

  • Li PL, Zhang Y, Yi F (2007) Lipid raft redox signaling platforms in endothelial dysfunction. Antioxid Redox Signal 9:1457–1470

    PubMed  CAS  Google Scholar 

  • Lingwood D, Kaiser HJ, Levental I, Simons K (2009) Lipid rafts as functional heterogeneity in cell membranes. Biochem Soc Trans 37:955–960

    PubMed  CAS  Google Scholar 

  • Liu B, Hannun YA (1997) Inhibition of the neutral magnesium-dependent sphingomyelinase by glutathione. J Biol Chem 272:16281–16287

    PubMed  CAS  Google Scholar 

  • Liu B, Andrieu-Abadie N, Levade T, Zhang P, Obeid LM, Hannun YA (1998) Glutathione regulation of neutral sphingomyelinase in tumor necrosis factor-alpha-induced cell death. J Biol Chem 273:11313–11320

    PubMed  CAS  Google Scholar 

  • Liu CY, Lee CF, Wei YH (2009) Role of reactive oxygen species-elicited apoptosis in the pathophysiology of mitochondrial and neurodegenerative diseases associated with mitochondrial DNA mutations. J Formosan Med Assoc 108:599–611

    Google Scholar 

  • Lu SP, Lin Feng MH, Huang HL, Huang YC, Tsou WI, Lai MZ (2007) Reactive oxygen species promote raft formation in T lymphocytes. Free Radic Biol Med 42:936–944

    PubMed  CAS  Google Scholar 

  • MacFarlane PM, Wilkerson JE, Lovett-Barr MR, Mitchell GS (2008) Reactive oxygen species and respiratory plasticity following intermittent hypoxia. Respir Physiol Neurobiol 164:263–271

    PubMed  CAS  Google Scholar 

  • Malaplate-Armand C, Florent-Bechard S, Youssef I, Koziel V, Sponne I, Kriem B et al (2006) Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis 23:178–189

    PubMed  CAS  Google Scholar 

  • Mansat-de Mas V, Bezombes C, Quillet-Mary A, Bettaieb A, D’Orgeix AD, Laurent G et al (1999) Implication of radical oxygen species in ceramide generation, c-Jun N-terminal kinase activation and apoptosis induced by daunorubicin. Mol Pharmacol 56:867–874

    PubMed  CAS  Google Scholar 

  • Martin SF, Sawai H, Villalba JM, Hannun YA (2007) Redox regulation of neutral sphingomyelinase-1 activity in HEK293 cells through a GSH-dependent mechanism. Arch Biochem Biophys 459:295–300

    PubMed  CAS  Google Scholar 

  • Mashimo M, Nishikawa M, Higuchi K, Hirose M, Wei Q, Haque A et al (2006) Production of reactive oxygen species in peripheral blood is increased in individuals with Helicobacter pylori infection and decreased after its eradication. Helicobacter 11:266–271

    PubMed  CAS  Google Scholar 

  • Mates JM, Sanchez-Jimenez FM (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32:157–170

    PubMed  CAS  Google Scholar 

  • Mathias S, Kolesnick R (1993) Ceramide: a novel second messenger. Adv Lipid Res 25:65–90

    PubMed  CAS  Google Scholar 

  • Mohazzab KM, Kaminski PM, Wolin MS (1994) NADH oxidoreductase is a major source of superoxide anion in bovine coronary artery endothelium. Am J Physiol 266:H2568–H2572

    PubMed  CAS  Google Scholar 

  • Morgan MJ, Kim YS, Liu Z (2007) Lipid rafts and oxidative stress-induced cell death. Antioxid Redox Signal 9:1471–1483

    PubMed  CAS  Google Scholar 

  • Morita SY, Kawabe M, Sakurai A, Okuhira K, Vertut-Doi A, Nakano M et al (2004) Ceramide in lipid particles enhances heparan sulfate proteoglycan and low density lipoprotein receptor-related protein-mediated uptake by macrophages. J Biol Chem 279:24355–24361

    PubMed  CAS  Google Scholar 

  • Muller-Peddinghaus R (1989) Reactive oxygen species and inflammation. Dtsch Tierarzti Wochenschr 96:210–212

    CAS  Google Scholar 

  • Ni X, Morales CR (2006) The lysosomal trafficking of acid sphingomyelinase is mediated by sortilin and mannose 6-phosphate receptor. Traffic 7:889–902

    Google Scholar 

  • Nicco C, Laurent A, Chereau C, Weill B, Batteux F (2005) Differential modulation of normal and tumor cell proliferation by reactive oxygen species. Biomed Pharmacother 59:169–174

    PubMed  CAS  Google Scholar 

  • Oakley FD, Abbott D, Li Q, Engelhardt JF (2009) Signaling components of redox active endosomes: the redoxosomes. Antioxid Redox Signal 11:1313–1333

    PubMed  CAS  Google Scholar 

  • Ochsendorf FR (1998) Infection and reactive oxygen species. Andrologia 30(Suppl 1):81–86

    PubMed  Google Scholar 

  • Ong SL, Zhang Y, Whitworth JA (2008) Reactive oxygen species and glucocorticoid-induced hypertension. Clin Exp Pharmacol Physiol 35:477–482

    PubMed  CAS  Google Scholar 

  • Oshikawa J, Urao N, Kim HW, Kaplan N, Razvi M, McKinney R et al (2010) Extracellular SOD-derived H2O2 promotes VEGF signaling in caveolae/lipid rafts and post-ischemic angiogenesis in mice. PLoS One 5:e10189

    PubMed  Google Scholar 

  • Oyagbemi AA, Azeez OI, Saba AB (2009) Interactions between reactive oxygen species and cancer: the roles of natural dietary antioxidants and their molecular mechanisms of action. Asian Pac J Cancer Prev 10:535–544

    PubMed  Google Scholar 

  • Paravicini TM, Touyz RM (2008) NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 31(Suppl 2):S170–S180

    PubMed  CAS  Google Scholar 

  • Patel RP, Moellering D, Murphy-Ullrich J, Jo H, Beckman JS, Darley-Usmar VM (2000) Cell signaling by reactive nitrogen and oxygen species in atherosclerosis. Free Radic Biol Med 28:1780–1794

    PubMed  CAS  Google Scholar 

  • Perrone GG, Tan SX, Dawes IW (2008) Reactive oxygen species and yeast apoptosis. Biochim Biophys Acta 1783:1354–1368

    PubMed  CAS  Google Scholar 

  • Perry G, Castellani RJ, Hirai K, Smith MA (1998) Reactive oxygen species mediate cellular damage in Alzheimer disease. J Alzheimers Dis 1:45–55

    PubMed  CAS  Google Scholar 

  • Piccoli C, Ria R, Scrima R, Cela O, D’Aprile A, Boffoli D et al (2005) Characterization of mitochondrial and extra-mitochondrial oxygen consuming reactions in human hematopoietic stem cells. Novel evidence of the occurrence of NAD(P)H oxidase activity. J Biol Chem 280:26467–26476

    PubMed  CAS  Google Scholar 

  • Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H et al (2006) TRPC3 and TRPC4 associate to form a redox-sensitive cation channel. Evidence for expression of native TRPC3-TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281:13588–13595

    PubMed  CAS  Google Scholar 

  • Puddu P, Puddu GM, Cravero E, Rosati M, Muscari A (2008) The molecular sources of reactive oxygen species in hypertension. Blood Press 17:70–77

    PubMed  CAS  Google Scholar 

  • Qiu H, Edmunds T, Baker-Malcolm J, Karey KP, Estes S, Schwarz C et al (2003) Activation of human acid sphingomyelinase through modification or deletion of C-terminal cysteine. J Biol Chem 278:32744–32752

    PubMed  CAS  Google Scholar 

  • Rajagopalan S, Kurz S, Munzel T, Tarpey M, Freeman BA, Griendling KK et al (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest 97:1916–1923

    PubMed  CAS  Google Scholar 

  • Rodighiero S, De Simoni A, Formenti A (2004) The voltage-dependent nonselective cation current in human red blood cells studied by means of whole-cell and nystatin-perforated patch-clamp techniques. Biochim Biophys Acta 1660:164–170

    PubMed  CAS  Google Scholar 

  • Sasaki H, Yamamoto H, Tominaga K, Masuda K, Kawai T, Teshima-Kondo S et al (2009) NADPH oxidase-derived reactive oxygen species are essential for differentiation of a mouse macrophage cell line (RAW264.7) into osteoclasts. J Med Invest 56:33–41

    PubMed  Google Scholar 

  • Sauer H, Wartenberg M, Hescheler J (2001) Reactive oxygen species as intracellular messengers during cell growth and differentiation. Cell Physiol Biochem 11:173–186

    PubMed  CAS  Google Scholar 

  • Scheel-Toellner D, Wang K, Assi LK, Webb PR, Craddock RM, Salmon M et al (2004) Clustering of death receptors in lipid rafts initiates neutrophil spontaneous apoptosis. Biochem Soc Trans 32:679–681

    PubMed  CAS  Google Scholar 

  • Schmitz G, Grandl M (2007) Role of redox regulation and lipid rafts in macrophages during Ox-LDL-mediated foam cell formation. Antioxid Redox Signal 9:1499–1518

    PubMed  CAS  Google Scholar 

  • Siafakas AR, Wright LC, Sorrell TC, Djordjevic JT (2006) Lipid rafts in Cryptococcus neoformans concentrate the virulence determinants phospholipase B1 and Cu/Zn superoxide dismutase. Eukaryot Cell 5:488–498

    PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    PubMed  CAS  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1:31–39

    PubMed  CAS  Google Scholar 

  • Stadtman ER (2004) Role of oxidant species in aging. Curr Med Chem 11:1105–1112

    PubMed  CAS  Google Scholar 

  • Sun G, Xu X, Wang Y, Shen X, Chen Z, Yang J (2008) Mycoplasma pneumoniae infection induces reactive oxygen species and DNA damage in A549 human lung carcinoma cells. Infect Immun 76:4405–4413

    PubMed  CAS  Google Scholar 

  • Szocs K (2004) Endothelial dysfunction and reactive oxygen species production in ischemia/reperfusion and nitrate tolerance. Gen Physiol Biophys 23:265–295

    PubMed  CAS  Google Scholar 

  • Tang XL, Takano H, Rizvi A, Turrens JF, Qiu Y, Wu WJ et al (2002) Oxidant species trigger late preconditioning against myocardial stunning in conscious rabbits. Am J Physiol Heart Circ Physiol 282:H281–H291

    PubMed  CAS  Google Scholar 

  • Toledo-Pereyra LH, Lopez-Neblina F, Toledo AH (2004) Reactive oxygen species and molecular biology of ischemia/reperfusion. Ann Transplant 9:81–83

    PubMed  CAS  Google Scholar 

  • Tsyupko AN, Dudnik LB, Evstigneeva RP, Alessenko AV (2001) Effects of reduced and oxidized glutathione on sphingomyelinase activity and contents of sphingomyelin and lipid peroxidation products in murine liver. Biochemistry 66:1028–1034

    PubMed  CAS  Google Scholar 

  • Ueda N, Kaushal GP, Shah SV (2000) Apoptotic mechanisms in acute renal failure. Am J Med 108:403–415

    PubMed  CAS  Google Scholar 

  • Ushio-Fukai M, Hilenski L, Santanam N, Becker PL, Ma Y, Griendling KK et al (2001) Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J Biol Chem 276:48269–48275

    PubMed  CAS  Google Scholar 

  • van den Elzen P, Garg S, Leon L, Brigl M, Leadbetter EA, Gumperz JE et al (2005) Apolipoprotein-mediated pathways of lipid antigen presentation. Nature 437:906–910

    PubMed  Google Scholar 

  • Van Wart HE, Birkedal-Hansen H (1990) The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci USA 87:5578–5582

    PubMed  Google Scholar 

  • Weinberg F, Chandel NS (2009) Reactive oxygen species-dependent signaling regulates cancer. Cell Mol Life Sci 66:3663–3673

    PubMed  CAS  Google Scholar 

  • White BH, Sidhu A (1998) Increased oxidative stress in renal proximal tubules of the spontaneously hypertensive rat: a mechanism for defective dopamine D1A receptor/G-protein coupling. J Hypertens 16:1659–1665

    PubMed  CAS  Google Scholar 

  • Wolf G (2005) Role of reactive oxygen species in angiotensin II-mediated renal growth, differentiation, and apoptosis. Antioxid Redox Signal 7:1337–1345

    PubMed  CAS  Google Scholar 

  • Woudenberg J, Rembacz KP, van den Heuvel FA, Woudenberg-Vrenken TE, Buist-Homan M, Geuken M et al (2010) Caveolin-1 is enriched in the peroxisomal membrane of rat hepatocytes. Hepatology 51:1744–1753

    PubMed  CAS  Google Scholar 

  • Xia M, Zhang C, Boini KM, Thacker AM, Li PL (2011) Membrane raft-lysosome redox signalling platforms in coronary endothelial dysfunction induced by adipokine visfatin. Cardiovasc Res 89:401–409

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Shimizu S, Mori Y (2009) Involvement of TRPM2 channel in amplification of reactive oxygen species-induced signaling and chronic inflammation. Nippon Yakurigaku Zasshi 134:122–126

    PubMed  CAS  Google Scholar 

  • Yang B, Rizzo V (2007) TNF-alpha potentiates protein-tyrosine nitration through activation of NADPH oxidase and eNOS localized in membrane rafts and caveolae of bovine aortic endothelial cells. Am J Physiol Heart Circ Physiol 292:H954–H962

    PubMed  CAS  Google Scholar 

  • Yang B, Oo TN, Rizzo V (2006a) Lipid rafts mediate H2O2 prosurvival effects in cultured endothelial cells. FASEB J 20:1501–1503

    PubMed  CAS  Google Scholar 

  • Yang Z, Asico LD, Yu P, Wang Z, Jones JE, Escano CS et al (2006b) D5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure. Am J Physiol Regul Integr Comp Physiol 290:R96–R104

    PubMed  CAS  Google Scholar 

  • Yasunari K, Kohno M, Kano H, Minami M, Yoshikawa J (2000) Dopamine as a novel antioxidative agent for rat vascular smooth muscle cells through dopamine D(1)-like receptors. Circulation 101:2302–2308

    PubMed  CAS  Google Scholar 

  • Yi F, Zhang AY, Janscha JL, Li PL, Zou AP (2004) Homocysteine activates NADH/NADPH oxidase through ceramide-stimulated Rac GTPase activity in rat mesangial cells. Kidney Int 66:1977–1987

    PubMed  CAS  Google Scholar 

  • Yi F, Chen QZ, Jin S, Li PL (2007) Mechanism of homocysteine-induced Rac1/NADPH oxidase activation in mesangial cells: role of guanine nucleotide exchange factor Vav2. Cell Physiol Biochem 20:909–918

    PubMed  CAS  Google Scholar 

  • Yi F, Jin S, Zhang F, Xia M, Bao JX, Hu J et al (2009a) Formation of lipid raft redox signalling platforms in glomerular endothelial cells: an early event of homocysteine-induced glomerular injury. J Cell Mol Med 13:3303–3314

    PubMed  Google Scholar 

  • Yi F, Xia M, Li N, Zhang C, Tang L, Li PL (2009b) Contribution of guanine nucleotide exchange factor Vav2 to hyperhomocysteinemic glomerulosclerosis in rats. Hypertension 53:90–96

    PubMed  CAS  Google Scholar 

  • Yin T, Sandhu G, Wolfgang CD, Burrier A, Webb RL, Rigel DF et al (1997) Tissue-specific pattern of stress kinase activation in ischemic/reperfused heart and kidney. J Biol Chem 272:19943–19950

    PubMed  CAS  Google Scholar 

  • Yoshimura S, Banno Y, Nakashima S, Hayashi K, Yamakawa H, Sawada M et al (1999) Inhibition of neutral sphingomyelinase activation and ceramide formation by glutathione in hypoxic PC12 cell death. J Neurochem 73:675–683

    PubMed  CAS  Google Scholar 

  • Yu P, Yang Z, Jones JE, Wang Z, Owens SA, Mueller SC et al (2004) D1 dopamine receptor signaling involves caveolin-2 in HEK-293 cells. Kidney Int 66:2167–2180

    PubMed  CAS  Google Scholar 

  • Zeng C, Villar VA, Yu P, Zhou L, Jose PA (2009) Reactive oxygen species and dopamine receptor function in essential hypertension. Clin Exp Hypertens 31:156–178

    PubMed  CAS  Google Scholar 

  • Zhai J, Strom AL, Kilty R, Venkatakrishnan P, White J, Everson WV et al (2009) Proteomic characterization of lipid raft proteins in amyotrophic lateral sclerosis mouse spinal cord. FEBS J 276:3308–3323

    PubMed  CAS  Google Scholar 

  • Zhang C, Li PL (2010) Membrane raft redox signalosomes in endothelial cells. Free Radic Res 44(8):831–842

    PubMed  CAS  Google Scholar 

  • Zhang DX, Zou AP, Li PL (2001) Ceramide reduces endothelium-dependent vasodilation by increasing superoxide production in small bovine coronary arteries. Circ Res 88:824–831

    PubMed  CAS  Google Scholar 

  • Zhang AY, Yi F, Zhang G, Gulbins E, Li PL (2006) Lipid raft clustering and redox signaling platform formation in coronary arterial endothelial cells. Hypertension 47:74–80

    PubMed  CAS  Google Scholar 

  • Zhang AY, Yi F, Jin S, Xia M, Chen QZ, Gulbins E et al (2007) Acid sphingomyelinase and its redox amplification in formation of lipid raft redox signaling platforms in endothelial cells. Antioxid Redox Signal 9:817–828

    PubMed  CAS  Google Scholar 

  • Zhang Y, Li X, Carpinteiro A, Gulbins E (2008) Acid sphingomyelinase amplifies redox signaling in Pseudomonas aeruginosa-induced macrophage apoptosis. J Immunol 181:4247–4254

    PubMed  CAS  Google Scholar 

  • Zhang C, Hu JJ, Xia M, Boini KM, Brimson C, Li PL (2010) Redox signaling via lipid raft clustering in homocysteine-induced injury of podocytes. Biochim Biophys Acta 1803:482–491

    PubMed  CAS  Google Scholar 

  • Zuo L, Ushio-Fukai M, Hilenski LL, Alexander RW (2004) Microtubules regulate angiotensin II type 1 receptor and Rac1 localization in caveolae/lipid rafts: role in redox signaling. Arterioscler Thromb Vasc Biol 24:1223–1228

    PubMed  CAS  Google Scholar 

  • Zuo L, Ushio-Fukai M, Ikeda S, Hilenski L, Patrushev N, Alexander RW (2005) Caveolin-1 is essential for activation of Rac1 and NAD(P)H oxidase after angiotensin II type 1 receptor stimulation in vascular smooth muscle cells: role in redox signaling and vascular hypertrophy. Arterioscler Thromb Vasc Biol 25:1824–1830

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

The works cited in the authors’ laboratory were supported by the National Institutes of Health grants (HL075316 and HL057244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pin-Lan Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Li, PL., Zhang, Y. (2013). Cross Talk Between Ceramide and Redox Signaling: Implications for Endothelial Dysfunction and Renal Disease. In: Gulbins, E., Petrache, I. (eds) Sphingolipids in Disease. Handbook of Experimental Pharmacology, vol 216. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1511-4_9

Download citation

Publish with us

Policies and ethics