Skip to main content

The Mitochondrial DNA Polymerase in Health and Disease

  • Chapter
  • First Online:
Book cover Genome Stability and Human Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 50))

Abstract

Since mutations in mitochondrial DNA (mtDNA) have been shown to be a cause of many mitochondrial diseases as well as aging, it is important to understand the origin of these mutations and how replication proteins modulate this process. DNA polymerase γ (pol γ) is the polymerase that is responsible for replication and repair of mtDNA. Pol γ has three main roles in mtDNA maintenance and mutagenesis. As the only known DNA polymerase in mitochondria, pol γ is required for all replication and repair functions and is the main source of errors produced in human mtDNA. Pol γ is also sensitive to a host of antiviral nucleoside analogs used to treat HIV-1 infections, which can cause an induced mitochondrial toxicity. Finally, the gene for pol γ, POLG, is a genetic locus for several mitochondrial disease with over 150 genetic mutations currently identified.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akbari, M., Visnes, T., Krokan, H. E., and Otterlei, M. (2008) Mitochondrial base excision repair of uracil and AP sites takes place by single-nucleotide insertion and long-patch DNA synthesis. DNA Repair (Amst), 7, 605–616.

    Article  CAS  Google Scholar 

  • Arnaudo, E., Dalakas, M., Shanske, S., Moraes, C. T., Dimauro, S., and Schon, E. A. (1991) Depletion of muscle mitochondrial DNA in AIDS patients with zidovudine- induced myopathy. Lancet, 337, 508–510.

    Article  CAS  PubMed  Google Scholar 

  • Bebenek, K. and Kunkel, T. A. (2004) Functions of DNA polymerases. Adv Protein Chem, 69, 137–165.

    Article  CAS  PubMed  Google Scholar 

  • Chan, S. S. and Copeland, W. C. (2009) DNA polymerase gamma and mitochondrial disease: Understanding the consequence of POLG mutations. Biochim Biophys Acta, 1787, 312–319.

    Article  CAS  PubMed  Google Scholar 

  • Chan, S. S. L., Longley, M. J., and Copeland, W. C. (2005) The common A467T mutation in the human mitochondrial DNA polymerase (POLG) compromises catalytic efficiency and interaction with the accessory subunit. J Biol Chem, 280, 31341–31346.

    Article  CAS  PubMed  Google Scholar 

  • Chan, S. S. L., Longley, M. J., and Copeland, W. C. (2006) Modulation of the W748S mutation in DNA polymerase {gamma} by the E1143G polymorphism in mitochondrial disorders. Hum Mol Genet, 15, 3473–3483.

    Article  CAS  PubMed  Google Scholar 

  • Copeland, W. C., Chen, M. S., and Wang, T. S. (1992) Human DNA polymerases alpha and beta are able to incorporate anti-HIV deoxynucleotides into DNA. J Biol Chem, 267, 21459–21464.

    CAS  PubMed  Google Scholar 

  • Copeland, W. C. and Longley, M. J. (2008) DNA2 resolves expanding flap in mitochondrial base excision repair. Mol Cell, 32, 457–458.

    Article  CAS  PubMed  Google Scholar 

  • Dalakas, M. C., Illa, I., Pezeshkpour, G. H., Laukaitis, J. P., Cohen, B., and Griffin, J. L. (1990) Mitochondrial myopathy caused by long-term zidovudine therapy. N Engl J Med, 322, 1098–1105.

    Article  CAS  PubMed  Google Scholar 

  • de Vries, M. C., Rodenburg, R. J., Morava, E., van Kaauwen, E. P., Ter Laak, H., Mullaart, R. A., Snoeck, I. N., van Hasselt, P. M., Harding, P., van den Heuvel, L. P., and Smeitink, J. A. (2007) Multiple oxidative phosphorylation deficiencies in severe childhood multi-system disorders due to polymerase gamma (POLG1) mutations. Eur J Pediatr, 166, 229–234.

    Article  PubMed  Google Scholar 

  • Dimauro, S. and Davidzon, G. (2005) Mitochondrial DNA and disease. Ann Med, 37, 222–232.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, S., Xu, B., and Clayton, D. A. (1995) Efficient incorporation of anti-HIV deoxynucleotides by recombinant yeast mitochondrial DNA polymerase. J Biol Chem, 270, 18929–18934.

    Article  CAS  PubMed  Google Scholar 

  • Ferrari, G., Lamantea, E., Donati, A., Filosto, M., Briem, E., Carrara, F., Parini, R., Simonati, A., Santer, R., and Zeviani, M. (2005) Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-{gamma}A. Brain, 128, 723–731.

    Article  PubMed  Google Scholar 

  • Frick, L. W., Nelson, D. J., St. Clair, M. H., Furman, P. A., and Krenitsky, T. A. (1988) Effects of 3’-azido-3’-deoxythymidine on the deoxynucleotide triphosphate pools of cultured human cells. Biochem Biophys Res Commun, 154, 124–129.

    Google Scholar 

  • Furman, P. A., Fyfe, J. A., St. Clair, M. H., Weinhold, K., Rideout, J. L., Freeman, G. A., Lehrman, S. N., Bolognesi, D. P., Broder, S., Mitsuya, H., and Barry, D. W. (1986) Phosphorylation of 3’-azido-3’-deoxythymidine and selective interaction of the 5’-triphosphate with human immunodeficiency virus reverse transcriptase. Proc Natl Acad Sci USA, 83, 8333–8337.

    Google Scholar 

  • Graziewicz, M. A., Longley, M. J., Bienstock, R. J., Zeviani, M., and Copeland, W. C. (2004) Structure-function defects of human mitochondrial DNA polymerase in autosomal dominant progressive external ophthalmoplegia. Nat Struct Mol Biol, 11, 770–776.

    Article  CAS  PubMed  Google Scholar 

  • Graziewicz, M. A., Longley, M. J., and Copeland, W. C. (2006) DNA polymerase gamma in Mitochondrial DNA Replication and Repair. Chem Rev, 106, 383–405.

    Article  CAS  PubMed  Google Scholar 

  • Hakonen, A. H., Heiskanen, S., Juvonen, V., Lappalainen, I., Luoma, P. T., Rantamaki, M., Goethem, G. V., Lofgren, A., Hackman, P., Paetau, A., Kaakkola, S., Majamaa, K., Varilo, T., Udd, B., Kaariainen, H., Bindoff, L. A., and Suomalainen, A. (2005) Mitochondrial DNA polymerase W748S mutation: a common cause of autosomal recessive ataxia with ancient European origin. Am J Hum Genet, 77, 430–441.

    Article  CAS  PubMed  Google Scholar 

  • Hart, G. J., Orr, D. C., Penn, C. R., Figueiredo, H. T., Gray, N. M., Boehme, R. E., and Cameron, J. M. (1992) Effects of (-)-2’-deoxy-3’-thiacytidine (3TC) 5’-triphosphate on human immunodeficiency virus reverse transcriptase and mammalian DNA polymerases alpha, beta, and gamma. Antimicrob Agents Chemother, 36, 1688–1694.

    CAS  PubMed  Google Scholar 

  • Huang, P., Farquhar, D., and Plunkett, W. (1990) Selective action of 3’-azido-3’-deoxythymidine 5’-triphosphate on viral reverse transcriptases and human DNA polymerases. J Biol Chem, 265, 11914–11918.

    CAS  PubMed  Google Scholar 

  • Huang, P., Farquhar, D., and Plunkett, W. (1992) Selective action of 2’,3’-didehydro-2’,3’-dideoxythymidine triphosphate on human immunodeficiency virus reverse transcriptase and human DNA polymerases. J Biol Chem, 267, 2817–2822.

    CAS  PubMed  Google Scholar 

  • Johnson, A. A., Ray, A. S., Hanes, J., Suo, Z., Colacino, J. M., Anderson, K. S., and Johnson, K. A. (2001) Toxicity of antiviral nucleoside analogs and the human mitochondrial DNA polymerase. J Biol Chem, 276, 40847–40857.

    Article  CAS  PubMed  Google Scholar 

  • Kaguni, L. S., Wernette, C. M., Conway, M. C., and Yang-Cashman, P. (1988) Structural and catalytic features of the mitochondrial DNA polymerase from Drosophila melanogaster embryos. Eukaryotic DNA Replication, 6th edition, Cold Spring Harbor Press, New York.

    Google Scholar 

  • Kakuda, T. N. (2000) Pharmacology of nucleoside and nucleotide reverse transcriptase inhibitor-induced mitochondrial toxicity. Clin Ther, 22, 685–708.

    Article  CAS  PubMed  Google Scholar 

  • Korhonen, J. A., Pham, X. H., Pellegrini, M., and Falkenberg, M. (2004) Reconstitution of a minimal mtDNA replisome in vitro. EMBO J, 23, 2423–2429.

    Article  CAS  PubMed  Google Scholar 

  • Lewis, W., Simpson, J. F., and Meyer, R. R. (1994) Cardiac mitochondrial DNA polymerase-gamma is inhibited competitively and noncompetitively by phosphorylated zidovudine. Circ Res, 74, 344–348.

    CAS  PubMed  Google Scholar 

  • Lim, S. E. and Copeland, W. C. (2001) Differential incorporation and removal of antiviral deoxynucleotides by human DNA polymerase gamma. J Biol Chem, 276, 23616–23623.

    Article  CAS  PubMed  Google Scholar 

  • Lim, S. E., Longley, M. J., and Copeland, W. C. (1999) The mitochondrial p55 accessory subunit of human DNA polymerase gamma enhances DNA binding, promotes processive DNA synthesis, and confers N-ethylmaleimide resistance. J Biol Chem, 274, 38197–38203.

    Article  CAS  PubMed  Google Scholar 

  • Lim, S. E., Ponamarev, M. V., Longley, M. J., and Copeland, W. C. (2003) Structural determinants in human DNA polymerase gamma account for mitochondrial toxicity from nucleoside analogs. J Mol Biol, 329, 45–57.

    Article  CAS  PubMed  Google Scholar 

  • Liu, P., Qian, L., Sung, J. S., de Souza-Pinto, N. C., Zheng, L., Bogenhagen, D. F., Bohr, V. A., Wilson, D. M., 3rd, Shen, B., and Demple, B. (2008) Removal of oxidative DNA damage via FEN1-dependent long-patch base excision repair in human cell mitochondria. Mol Cell Biol, 28, 4975–4987.

    Article  CAS  PubMed  Google Scholar 

  • Longley, M. J. and Mosbaugh, D. W. (1991) Properties of the 3’ to 5’ exonuclease associated with porcine liver DNA polymerase gamma. Substrate specificity, product analysis, inhibition, and kinetics of terminal excision. J Biol Chem, 266, 24702–24711.

    CAS  PubMed  Google Scholar 

  • Longley, M. J., Nguyen, D., Kunkel, T. A., and Copeland, W. C. (2001) The fidelity of human DNA polymerase gamma with and without exonucleolytic proofreading and the p55 accessory subunit. J Biol Chem, 276, 38555–38562.

    Article  CAS  PubMed  Google Scholar 

  • Longley, M. J., Prasad, R., Srivastava, D. K., Wilson, S. H., and Copeland, W. C. (1998a) Identification of 5’-deoxyribose phosphate lyase activity in human DNA polymerase gamma and its role in mitochondrial base excision repair in vitro. Proc Natl Acad Sci USA, 95, 12244–12248.

    Article  CAS  PubMed  Google Scholar 

  • Longley, M. J., Ropp, P. A., Lim, S. E., and Copeland, W. C. (1998b) Characterization of the native and recombinant catalytic subunit of human DNA polymerase gamma: identification of residues critical for exonuclease activity and dideoxynucleotide sensitivity. Biochemistry, 37, 10529–10539.

    Article  CAS  PubMed  Google Scholar 

  • Martin, J. L., Brown, C. E., Matthews-Davis, N., and Reardon, J. E. (1994) Effects of antiviral nucleoside analogs on human DNA polymerases and mitochondrial DNA synthesis. Antimicrob Agents Chemother, 38, 2743–2749.

    CAS  PubMed  Google Scholar 

  • Nguyen, K. V., Sharief, F., Chan, S. S. L., Copeland, W. C., and Naviaux, R. K. (2006) Molecular diagnosis of Alpers syndrome. J Hepatol, 45, 108–116.

    Article  CAS  PubMed  Google Scholar 

  • Nickel, W., Austermann, S., Bialek, G., and Grosse, F. (1992) Interactions of azidothymidine triphosphate with the cellular DNA polymerases alpha, delta, and epsilon and with DNA primase. J Biol Chem, 267, 848–854.

    CAS  PubMed  Google Scholar 

  • Parker, W. B., White, E. L., Shaddix, S. C., Ross, L. J., Buckheit, R. W., Jr., Germany, J. M., Secrist, J. A. D., Vince, R., and Shannon, W. M. (1991) Mechanism of inhibition of human immunodeficiency virus type 1 reverse transcriptase and human DNA polymerases alpha, beta, and gamma by the 5’-triphosphates of carbovir, 3’-azido-3’-deoxythymidine, 2’,3’-dideoxyguanosine and 3’-deoxythymidine. A novel RNA template for the evaluation of antiretroviral drugs. J Biol Chem, 266, 1754–1762.

    CAS  PubMed  Google Scholar 

  • Ponamarev, M. V., Longley, M. J., Nguyen, D., Kunkel, T. A., and Copeland, W. C. (2002) Active site mutation in DNA polymerase gamma associated with progressive external Ophthalmoplegia causes error-prone DNA synthesis. J Biol Chem, 277, 15225–15228.

    Article  CAS  PubMed  Google Scholar 

  • Ropp, P. A. and Copeland, W. C. (1996) Cloning and characterization of the human mitochondrial DNA polymerase, DNA polymerase gamma. Genomics, 36, 449–458.

    Article  CAS  PubMed  Google Scholar 

  • Sweasy, J. B., Lauper, J. M., and Eckert, K. A. (2006) DNA polymerases and human diseases. Radiat Res, 166, 693–714.

    Article  CAS  PubMed  Google Scholar 

  • Szczesny, B., Tann, A. W., Longley, M. J., Copeland, W. C., and Mitra, S. (2008) Long patch base excision repair in mammalian mitochondrial genomes. J Biol Chem, 283, 26349–26356.

    Article  CAS  PubMed  Google Scholar 

  • Tzoulis, C., Engelsen, B. A., Telstad, W., Aasly, J., Zeviani, M., Winterthun, S., Ferrari, G., Aarseth, J. H., and Bindoff, L. A. (2006) The spectrum of clinical disease caused by the A467T and W748S POLG mutations: a study of 26 cases. Brain, 129, 1685–1692.

    Article  PubMed  Google Scholar 

  • van Goethem, G., Dermaut, B., Lofgren, A., Martin, J. J., and van Broeckhoven, C. (2001) Mutation of POLG is associated with progressive external ophthalmoplegia characterized by mtDNA deletions. Nat Genet, 28, 211–212.

    Article  PubMed  Google Scholar 

  • van Goethem, G., Martin, J. J., Dermaut, B., Lofgren, A., Wibail, A., Ververken, D., Tack, P., Dehaene, I., van Zandijcke, M., Moonen, M., Ceuterick, C., De Jonghe, P., and van Broeckhoven, C. (2003a) Recessive POLG mutations presenting with sensory and ataxic neuropathy in compound heterozygote patients with progressive external ophthalmoplegia. Neuromuscul Disord, 13, 133–142.

    Article  PubMed  Google Scholar 

  • van Goethem, G., Mercelis, R., Lofgren, A., Seneca, S., Ceuterick, C., Martin, J. J., and van Broeckhoven, C. (2003b) Patient homozygous for a recessive POLG mutation presents with features of MERRF. Neurology, 61, 1811–1813.

    PubMed  Google Scholar 

  • Wallace, D. C. (1999) Mitochondrial diseases in man and mouse. Science, 283, 1482–1488.

    Article  CAS  PubMed  Google Scholar 

  • Wong, L. J., Naviaux, R. K., Brunetti-Pierri, N., Zhang, Q., Schmitt, E. S., Truong, C., Milone, M., Cohen, B. H., Wical, B., Ganesh, J., Basinger, A. A., Burton, B. K., Swoboda, K., Gilbert, D. L., Vanderver, A., Saneto, R. P., Maranda, B., Arnold, G., Abdenur, J. E., Waters, P. J., and Copeland, W. C. (2008) Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum Mutat, 29, E150–E172.

    Article  PubMed  Google Scholar 

  • Zheng, L., Zhou, M., Guo, Z., Lu, H., Qian, L., Dai, H., Qiu, J., Yakubovskaya, E., Bogenhagen, D. F., Demple, B., and Shen, B. (2008) Human DNA2 is a mitochondrial nuclease/helicase for efficient processing of DNA replication and repair intermediates. Mol Cell, 32, 325–336.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, W., Khrapko, K., Coller, H., Thilly, W. G., and Copeland, W. C. (2006) Origins of human mitochondrial point mutations as DNA polymerase gamma-mediated errors. Mutat Res, 599, 11–20.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William C. Copeland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Copeland, W.C. (2010). The Mitochondrial DNA Polymerase in Health and Disease. In: Nasheuer, HP. (eds) Genome Stability and Human Diseases. Subcellular Biochemistry, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3471-7_11

Download citation

Publish with us

Policies and ethics