Skip to main content

Cholesterol in Alzheimer’s Disease and other Amyloidogenic Disorders

  • Chapter
  • First Online:

Part of the book series: Subcellular Biochemistry ((SCBI,volume 51))

Abstract

The complex association of cholesterol metabolism and Alzheimer’s disease is presented in depth, including the possible benefits to be gained from cholesterol-lowering statin therapy. Then follows a survey of the role of neuronal membrane cholesterol in Aβ pore formation and Aβ fibrillogenesis, together with the link with membrane raft domains and gangliosides. The contribution of structural studies to Aβ fibrillogenesis, using TEM and AFM, is given some emphasis. The role of apolipoprotein E and its isoforms, in particular ApoE4, in cholesterol and Aβ binding is presented, in relation to genetic risk factors for Alzheimer’s disease. Increasing evidence suggests that cholesterol oxidation products are of importance in generation of Alzheimer’s disease, possibly induced by Aβ-produced hydrogen peroxide. The body of evidence for a link between cholesterol in atherosclerosis and Alzheimer’s disease is increasing, along with an associated inflammatory response. The possible role of cholesterol in tau fibrillization, tauopathies and in some other non-Aβ amyloidogenic disorders is surveyed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

Aβ:

Amyloid-beta

References

  • Abildayeva, K., Jansen, P.J., Hirsch-Reinshagen, V., Bloks, V.W., Bakker, A.H. F., Ramaekers, F.C.S., de Vente, J., Groen, A.K., Wellington, C.L., Kuipers, F., Mulder, M., 2006, 24(S)-hydroxycholesterol participates in a liver X receptor-controlled pathway in astrocytes that regulates apolipoprotein E-mediated cholesterol efflux. J. Biol. Chem. 281: 12799–12808.

    Article  CAS  PubMed  Google Scholar 

  • Adalbert, R., Gilley, J., Coleman, M.P., 2007, Aβ, tau and ApoE4 in Alzheimer’s disease: The axonal connection. Trends Mol. Med. 13: 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Aizawa, Y., Fukatsu, R., Takamaru, Y., Tsuzuki, K., Chiba, H., Kobayashi, K., Fujii, N., Takahata, N., 1997, Amino-terminus truncated apolipoprotein E is the major species in amyloid deposits in Alzheimer’s disease-affected brains: A possible role for apolipoprotein E in Alzheimer’s disease. Brain Res. 768: 208–214.

    Article  CAS  PubMed  Google Scholar 

  • Avdulov, N.A., Chochina, S.V., Igbavboa, U., Warden, C.S., Vassiliev, A.V., Wood, W. G., 1997, Lipid binding to amyloid β-peptide aggregates: Preferential binding of cholesterol as compared with phosphatidylcholine and fatty acids. J. Neurochem. 69: 1746–1752.

    Article  CAS  PubMed  Google Scholar 

  • Avidan-Shpalter, C., Gazit, E., 2006, The early stages of amyloid formation: Biophysical and structural characterization of human calcitonin pre-fibrillar assemblies. Amyloid 13: 216–225.

    Article  CAS  PubMed  Google Scholar 

  • Bar-On, P., Crews, L., Koob, A.O., Mizuno, H., Adame, A., Spencer, B., Masliah, E., 2008, Statins reduce neuronal α-synuclein aggregation in in vitro models of Parkinson’s disease. J. Neurochem. 105: 1656–1667.

    Article  CAS  PubMed  Google Scholar 

  • Behl, C., 2005, Oxidative stress in Alzheimer’s disease: Implications for prevention and therapy. In: Harris, J.R. and Fahrenholz, F. (eds.), Alzheimer’s Disease: Cellular and Molecular Aspects of Amyloid β, Springer, New York, pp. 65–78.

    Google Scholar 

  • Bishop, G.M., Robinson, S.R., 2004, The amyloid paradox: Amyloid-β-metal complexes can be neurotoxic and neuroprotective. Brain Pathol. 14: 448–452.

    Article  CAS  PubMed  Google Scholar 

  • Björkhem, I., Cedazo-Minguez, A., Leoni, V., Meaney, S., 2009, Oxysterols and neurodegenerative diseases. Mol. Asp. Med. 30: 171–179.

    Article  CAS  Google Scholar 

  • Borroni, B., Archetti, S., Agosti, C., Akkawi, N., Brambilla, C., Caimi, L., Caltragirone, C., DiLuca, M., Padovani, A., 2004, Intronic CYP46 polymorphism along with ApoE genotype in sporadic Alzheimer disease: From risk factors to disease modulators. Neurobiol. Aging 25: 747–751.

    Article  CAS  PubMed  Google Scholar 

  • Bosco, D.A., Fowler, D.M., Zhang, Q., Nieva, J., Powers, E.T., Wentworth, P., Lerner, R.A., Kelly, J. W., 2006, Elevated levels of oxidized cholesterol metabolites in Lewy body disease brains accelerate α-synuclein fibrillization. Nat. Chem. Biol. 2: 249–253.

    Article  CAS  PubMed  Google Scholar 

  • Brown, J., Theisler, C., Silberman, S., Magnuson, D., Gottardi-Littell, N., Lee, J.M., Yager, D., Crowley, J., Sambamurti, K., Rahman, M.M., Reiss, A.B., Eckman, C.R., Wolozin, B., 2004, Differential expression of cholesterol hydroxylases in Alzheimer’s disease. J. Biol. Chem. 279: 34674–34681.

    Article  CAS  PubMed  Google Scholar 

  • Burns, M., Duff, K., 2002, Cholesterol in Alzheimer’s disease and tauopathy. Ann NY Acad. Sci. 977: 367–375.

    Article  CAS  PubMed  Google Scholar 

  • Burns, M., Gaynor, K., Olm, V., Mercken, M., LaFrancois, J., Wang, L., Mathews, P.M., Noble, W., Matsuoka, Y., Duff, K., 2003a, Presenilin redistribution associated with aberrant cholesterol transport enhances β-amyloid production in vivo. J. Neurosci. 23: 5645–5649.

    CAS  PubMed  Google Scholar 

  • Burns, M.P., Noble, W.J., Olm, V., Gaynor, K., Casey, E., LaFrancois, J., Wang, L., Duff, K., 2003b, Co-localization of cholesterol, apolipoprotein E and fibrillar Aβ in amyloid plaques. Mol. Brain Res. 110: 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Burns, M.P., Igbavboa, U., Wang, L., Wood, W.G., Duff, K., 2006, Cholesterol distribution, not total levels, correlate with altered amyloid precursor protein processing in statin-treated mice. Neuromol. Med. 8: 319–328.

    Article  CAS  Google Scholar 

  • Butterfield, D.A., Castegna, A., Lauderback, C.M., Drake, J., 2002, Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging 23: 655–664.

    Article  PubMed  Google Scholar 

  • Canevari, L., Clark, J.B., 2007, Alzheimer’s disease and cholesterol: The fat connection, Neurochem. Res. 32: 739–750.

    Article  CAS  PubMed  Google Scholar 

  • Carter, D.B., 2005, The interaction of amyloid-β with ApoE. In: Harris, J.R. and Fahrenholz, F. (eds.), Alzheimer’s Disease: Cellular and Molecular Aspects of Amyloid β, Springer, New York, pp. 255–272.

    Google Scholar 

  • Carter, C.J., 2007, Convergence of genes implicated in Alzheimer’s disease on the cerebral cholesterol shuttle: APP, cholesterol, lipoproteins, and atherosclerosis. Neurochem. Int. 50: 12–38.

    Article  CAS  PubMed  Google Scholar 

  • Casserly, I., Topol, E., 2004, Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet 363: 1139–1146.

    Article  CAS  PubMed  Google Scholar 

  • Castaño, E.M., Prelli, F., Wisniewski, T., Golabek, A., Kumar, R.A., Soto, C., Frangione, B., 1995, Fibrillogenesis in Alzheimer’s disease of amyloid β peptides and apolipoprotein E. Biochem. J. 306: 599–604.

    PubMed  Google Scholar 

  • Cechetto, D.F., Hachinski, V., Whitehead, S.N., 2008, Vascular risk factors and Alzheimer’s disease. Expert Rev. Neurotherapeut. 8: 743–750.

    Article  Google Scholar 

  • Chen, X., Ghribi, O., Geiger, J.D., 2008, Rabbits fed cholesterol-enriched diets exhibit pathological features of inclusion body myositis, Am. J. Physiol. Regulatory Integr. Comp. Physiol. 294: R829–R835.

    CAS  Google Scholar 

  • Cheon, M., Chang, I., Mohanty, S., Luheshi, L.M., Dobson, C.M., Vendruscolo, M., Favrin, G., 2007, Structural reorganization and potential toxicity of oligomeric species formed during the assembly of amyloid fibrils. PLoS Comp. Biol. 3: 1727–1738.

    Article  CAS  Google Scholar 

  • Cho, W.-J., Jena, B.P., Jeremie, A.M., 2008, Nano-scale imaging and dynamics of amylin-membrane interactions and its implications in type II diabetes mellitus. Meth. Cell Biol. 90: 267–286.

    Article  CAS  Google Scholar 

  • Cho, W.-J., Trikha, S., Jeremic, A.M., 2009, Cholesterol regulates assembly of human islet amyloid polypeptide on model membranes. J. Mol. Biol. In press. Doi.10.0116/j.jmb.2009.08.055.

    Google Scholar 

  • Chochina, S.V., Avdulov, N.A., Igbavboa, U., Cleary, J.P., O’Hare, E.O., Wood, W.G., 2001, Amyloid β-peptide1-40 increases neuronal membrane fluidity: Role of cholesterol and brain region. J. Lipid Res. 42: 1292–1297.

    CAS  PubMed  Google Scholar 

  • Christidis, D.S., Liberopoulos, E.N., Kakafika, A.I., Miltiadous, G.A., Cariolou, M., Ganotakis, E.S., Mikhailidis, D.P., Elisaf, M.S., 2006, The effect of apolipoprotein E polymorphism on the response to lipid-lowering treatment with atorvastatin or fenofibrate. J. Cardiovasc. Pharmacol. Ther. 11(3): 211–221.

    Article  CAS  PubMed  Google Scholar 

  • Crameri, A., Biondi, E., Kuehnle, K., Lutjohann, D., Thelen, K.M., Perga, S., Dotti, C.G., Nitsch, R.M., Dolores, M., Ledesma, D.M., Mohajeri, M.H., 2006, The role of seladin-1/DHCR24 in cholesterol biosynthesis, APP processing and Aβ generation in vivo. EMBO J. 25: 432–443.

    Article  CAS  PubMed  Google Scholar 

  • Crutcher, K.A., 2004, Apolipoprotein E is a prime suspect, not just and accomplice, in Alzheimer’s disease. J. Mol. Neurosci. 23: 181–188.

    Article  CAS  PubMed  Google Scholar 

  • Cutler, R.G., Kelly, J., Storie, K., Pedersen, W.A., Tammara, A., Hatanpaa, K., Troncoso, J.C., Mattson, M.P., 2004, Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 101: 2070–2075.

    Article  CAS  PubMed  Google Scholar 

  • D’Errico, G., Vitiello, G., Ortona, O., Tedeschi, A., Ramunno, A., D’Ursi, A.M., 2008, Interaction between Alzheimer’s Aβ(25-35) peptide and phospholipid bilayers: The role of cholesterol. Biochim. Biophys. Acta 1778: 2710–2716.

    Article  PubMed  CAS  Google Scholar 

  • Desai, P., DeKosky, S.T., Kamboh, M.I., 2002, Genetic variation in the cholesterol 24-hydroxylase (CYP46) gene and the risk of Alzheimer’s disease. Neurosci. Lett. 328: 9–12.

    Article  CAS  PubMed  Google Scholar 

  • Diociaiuti, M., Polzi, L.Z., Valvo, L., Malchiodi-Albedi, F., Bombelli, C., Gaudiano, M.C., 2006, Calcitonin forms oligomeric pore-like structures in lipid membranes. Biophys. J. 91: 2275–2281.

    Article  CAS  PubMed  Google Scholar 

  • Distl, R., Meske, V., Ohm, T.G., 2001, Tangle-bearing neurons contain more free cholesterol than adjacent tangle-free neurons. Acta Neuropathol. 101: 547–554.

    CAS  PubMed  Google Scholar 

  • Distl, R., Treiber-Held, S., Albert, F., Meske, V., Harzer, K., Ohm, T.G., 2003, Cholesterol storage and tau pathology in Neimann-Pick type C disease in the brain. J. Pathol. 200: 104–111.

    Article  CAS  PubMed  Google Scholar 

  • Eckert, G.P., Wood, W.G., Müller, W.E., 2005, Membrane disordering effects of β-amyloid peptides. In: Harris, J.R. and Fahrenholz, F. (eds.), Alzheimer’s Disease: Cellular and Molecular Aspects of Amyloid β, Springer, New York, pp. 319–349.

    Google Scholar 

  • Ehehalt, R., Keller, P., Haass, C., Thiele, C. Simons, K., 2003, Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J. Cell Biol. 160: 113–123.

    Article  CAS  PubMed  Google Scholar 

  • Fan, Q.-W., Wei, Y., Takao, S., Yanagisawa, K., Makoto, M., 2001, Cholesterol-dependent modulation of tau phosphorylation in cultured neurons. J. Neurochem. 76: 391–400.

    Article  CAS  PubMed  Google Scholar 

  • Fassbender, K., Simons, M., Bergmann, C., Stoick, M., Lüjohann, D., Keller, P., Runz, H., Kühl, S., Bertsch, T., von Bergmann, K., Hennerici, M., Beyreuther, K., Hartmann, T., 2001, Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc. Natl. Acad. Sci. USA 98: 5856–5961.

    Article  CAS  PubMed  Google Scholar 

  • Fernández, A., Llacuna, L., Fernández-Checa, J.C., Colell, A., 2009, J. Neurosci. 29: 6394–6405.

    Article  PubMed  CAS  Google Scholar 

  • Ferrera, P., Mercado-Gómez, O., Silva-Aguilar, M., Valverde, M., Arias, C., 2008, Cholesterol potentiates beta-amyloid-induced toxicity in human neuroblastoma cells: Involvement of oxidative stress. Neurochem. Res. 33: 1509–1517.

    Article  CAS  PubMed  Google Scholar 

  • Finch, C.E., 2005, Developmental origins of aging in brain and blood vessels: An overview. Neurobiol. Aging 26: 281–291.

    Article  CAS  PubMed  Google Scholar 

  • Fortin, D.L., Troyer, M.D., Nakamura, K., Kubo, S.-I., Anthony, M.D., Edwards, R.H., 2004, Lipid rafts mediate the synaptic localization of α-synuclein. Neurobiol. Dis. 24: 6715–6723.

    CAS  Google Scholar 

  • Fryer, J.D., Simmins, K., Paradanian, M., Bales, K.R., Paul, S.M., Sullivan, P.M., Holtzman, D.M., 2005, Human apolipoprotein E4 alters the amyloid-β 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. Neurobiol. Dis. 25: 2803–2810.

    CAS  Google Scholar 

  • Galloway, S., Jian, L., Johnsen, R., Chew, S., Mamo, J.C.L., 2007, β-Amyloid or its precursor protein is found in epithelial cells of the small intestine and is stimulated by high-fat feeding. J. Nutr. Biochem. 18: 279–284.

    Article  CAS  PubMed  Google Scholar 

  • Gehman, J.D., O’Brien, C.C., Shabanpoor, F., Wade, J.D., Saparovic, F., 2008, Metal effects on the membrane interactions of amyloid-β-peptides. Eur. Biophys. J. 37: 333–344.

    Article  CAS  PubMed  Google Scholar 

  • Gellermann, G.P., Appel, T.R., Tannert, A., Radestock, A., Hortschansky, P., Schroeckh, V., Leisner, C., Lütkepohl, T., Shtrasburg, S., Röcken, C., Pras, M., Linke, R.P., Diekmann, S., Fändrich, M., 2005, Raft lipids as common components of human extracellular amyloid fibrils. Proc. Natl. Acad. Sci. USA 102: 6297–6302.

    Article  CAS  PubMed  Google Scholar 

  • Gellermann, G.P., Ullrich, K., Tannert, A., Unger, C., Habicht, G., Sauter, S.R.N., Hortschansky, P., Horn, U., Möllmann, U., Decker, M., Lehmann, J., Fändrich, M., 2006, Alzheimer-like plaque formation by human macrophages is reduced by fibrillation inhibitors and lovastatin. J. Mol. Biol. 360: 251–257.

    Article  CAS  PubMed  Google Scholar 

  • Ghribi, O., Larsen, B., Schrag, M., Herman, M.M., 2006, High cholesterol content in neurons increases BACE, β-amyloid, and phosphorylated tau levels in rabbit hippocampus. Ext. Neurol. 200: 460–467.

    Article  CAS  Google Scholar 

  • Ghribi, O., Golovko, M.Y., Larsen, B., Schrag, M., Murphh, E.J., 2007, Deposition of iron and beta-amyloid plaques is associated with cortical cellular damage in rabbits fed with long-term cholesterol-enriched diets. J. Neurochem. 103: 423–424.

    Google Scholar 

  • 1a. Ghribi, O., Schommer, E., Prasanthi, J.R.P., 2009, 27-hydroxycholestrol as the missing link between circulating cholesterol and AD-like pathology. Alzheimer’s & Dementia: J. Alzheimer’s Assoc 5: 180.

    Google Scholar 

  • Gilbert, R.J.C., Rosjohn, J., Parker, M.W., Tweten, R.K., Morgan, P.J., Mitchell, T.J., Errington, N., Rowe, A.J., Andrew, P.W., Byron, O., 1998, Self-interaction of pneumolysin, the pore forming protein toxin of Streptococcus pneumoniae. J. Mol Biol. 284: 1223–1237.

    Article  CAS  PubMed  Google Scholar 

  • Gong, J.S., Kobayashi, M., Hayashi, H., Zou, K., Sawamura, N., Fujita, S.C., Yanagisawa, K., Michikawa, H., 2002, Apolipoprotein E (ApoE) isoform-dependent lipid release from astrocytes prepared from human ApoE3 and ApoE4 knock-in mice. J. Biol. Chem. 277: 29919–29926.

    Article  CAS  PubMed  Google Scholar 

  • Gong, J.S., Morita, S.Y., Handa, T., Fujita, S.C., Yanagisawa, K., Michikawa, M., 2007, Novel action of lipoprotein E (ApoE): ApoE isoform specifically inhibits lipid-particle-mediated cholesterol release from neurons. Mol. Neurodegener. 2: 9. doi: 10.1 186/ 1750-1326-2-9.

    Article  PubMed  CAS  Google Scholar 

  • Greeve, I., Hermans-Borgmeyer, I., Brellinger, C., Kasper, D., Gomez-Isla, T., Behl, C., Levkau, B., Nitsch, R.M., 2000, The human DIMINUTO/DWARF1 homolog seladin-1 confers resistance to Alzheimer’s disease-associated neurodegeneration and oxidative stress. J. Neurosci. 20: 7345–7352.

    CAS  PubMed  Google Scholar 

  • Gylys, K.H., Fein, J.A., Yang, F., Miller, C.A., Cole, G.M., 2007, Increased cholesterol in Aβ-positive nerve terminals from Alzheimer’s disease cortex. Neurobiol. Aging 28: 8–17.

    Article  CAS  PubMed  Google Scholar 

  • Haberland, M.E., Reynolds, J.A., 1973, Self-association of cholesterol in aqueous solution. Proc. Natl. Acad. Sci. USA 70: 2313–2316.

    Article  CAS  PubMed  Google Scholar 

  • Harris, J.R., 1988, Electron microscopy of cholesterol. Micron Microsc. Acta 19: 19–32.

    Article  CAS  Google Scholar 

  • Harris, J.R., 2002, In vitro fibrillogenesis of the amyloid β1-42 peptide: cholesterol potentiation and aspirin inhibition. Micron 33: 609–626.

    Article  CAS  PubMed  Google Scholar 

  • Harris, J.R., 2008, Cholesterol binding to amyloid-β fibrils: A TEM study. Micron 39: 1192–1196.

    Article  CAS  PubMed  Google Scholar 

  • Hartmann, T., 2005, Cholesterol and Alzheimer’s disease: Statins, cholesterol depletion in APP processing and Aβ generation. In: Harris, J.R. and Fahrenholz, F. (eds.), Alzheimer’s Disease: Cellular and Molecular Aspects of Amyloid β, Springer, New York, pp. 365–380.

    Google Scholar 

  • Hatters, D.M., Peters-Libeu, C.A., Weisgraber, K.W., 2006, Apolipoprotein E structure: Insights into function. Trends Biochem. Sci. 31: 445.

    Article  CAS  PubMed  Google Scholar 

  • Hirsch-Reinshagen, V., Wellington, C.L., 2007, Cholesterol metabolism, apolipoprotein E, adenosine triphosphate-binding cassette transporters, and Alzheimer’s disease. Curr. Opin. Lipidol. 18: 325–332.

    Article  CAS  PubMed  Google Scholar 

  • Hofman, A., Ott, A., Breteler, M.M., Bots, M.L., Slooter, A.J., van Harskamp, F., van Duijn, C.N., van Broeckhoven, C., Grobbee, D.E., 1997, Atherosclerosis, apolipoprotein E, and prevalence of dementia and Alzheimer’s disease in the Rotterdam Study. Lancet 349: 151–154.

    Article  CAS  PubMed  Google Scholar 

  • Hooijmans, C.R., Van der Zee, C.E.E.M., Dederen, P.J., Brouwer, K.M., Reijmer, Y.D., van Groen, T., Broersen, L.M., Lütjohann, D., Heerschap, A., Kiliaan, A.J., 2009, DHA and cholesterol containing diets influence Alzheimer-like pathology, cognition and cerebral vasculature in APPSWE/PS1dE9 mice. Neurobiol. Dis. 33: 482–498.

    Google Scholar 

  • Hou, X., Mechler, A., Martin, L.L., Aguilar, M.-I., Small, D.H., 2008, Cholesterol and anionic phospholipids increase the binding of amyloidogenic transthyretin to lipid membranes. Biochim. Biophys. Acta 1778: 198–205.

    Article  CAS  PubMed  Google Scholar 

  • Igbavboa, U., Pidcock, J.M., Johnson, L.N.A., Malo, T.M., Studniski, A.E., Yu, S., Sun, G.Y., Wood, W. G., 2003, Cholesterol distribution in the Golgi complex of DITNC1 astrocytes is differentially altered by fresh and aged amyloid β-peptide-(1-42). J. Biol. Chem. 278: 17150–17167.

    Article  CAS  PubMed  Google Scholar 

  • Igbavboa, U., Sun, G.Y., Weisman, G.A., He, Y., Wood, W.G., 2009, Amyloid β-protein stimulates trafficking of cholesterol and caveolin-1 from the plasma membrane to the Golgi complex in mouse primary astrocytes. Neuroscience 162: 328–338.

    Article  CAS  PubMed  Google Scholar 

  • Infante, J., Rodríguez-Rodríguez, E., Mateo, I., Llorca, J., Vázquez-Higuera, J.L., Berciano, J., Combarros, O., 2008, Gene-gene interaction between heme oxygenase-1 and liver X receptor-β and Alzheimer’s disease risk. Neurobiol. Aging, In press, doi:10.1016/j.neurobiolaging.2008.05.025.

    Google Scholar 

  • Ishiwata, H., Sato, S.B., Vertut-Doï, A., Hamashima, Y., Miyajima, K., 1997, Cholesterol derivative of poly(ethylene glycol) inhibits clathrin-independent, but not clathrin-dependent endocytosis. Biochim. Biophys. Acta 1359: 123–135.

    Article  CAS  PubMed  Google Scholar 

  • Jang, H., Zheng, J., Nussinov, R., 2007a, Models of β-amyloid ion channels in the membrane suggest that channel formation in the bilayer is a dynamic process. Biophys. J. 93: 1938–1949.

    Article  CAS  PubMed  Google Scholar 

  • Jang, H., Zheng, J., Lal, R., Nussinov, R., 2007b, New structures help the modelling of toxic amyloidβ ion channels. Trends Biochem. Sci. 33: 91–100.

    Google Scholar 

  • Jayasinghe, S.A., Langen, R., 2007, Membrane interaction of islet amyloid polypeptide. Biochim. Biophys. Acta 1768: 2002–2009.

    Article  CAS  PubMed  Google Scholar 

  • Kakio, A., Nishimoto, S., Yanaagisawa, K., Kozutsumi, Y., Matsuzaki, K., 2001, Cholesterol-dependent formation of GM1 ganglioside-bound amyloid beta-protein, an endogenous seed for Alzheimer amyloid. J. Biol. Chem. 276: 24985–24990.

    Article  CAS  PubMed  Google Scholar 

  • Kakio, A., Nishimoto, S., Yanagisawa, K., Kozutsumi, Y., Matsuzaki, K., 2002, Interactions of amyloid beta-protein with various gangliosides in raft-like membranes: Importance of GM1 ganglioside-bound form as an endogenous seed for Alzheimer amyloid. Biochemistry 41: 7385–7390.

    Article  CAS  PubMed  Google Scholar 

  • Kalman, J., Janka, Z., 2005, Cholesterol and Alzheimer’s disease. Orv. Hetil. 146: 1903–1911.

    PubMed  Google Scholar 

  • Kalvodova, L., Kahya, N., Schwille, P., Ehehalt, R., Verkade, P., Drechsel, D., Simons, K., 2005, Lipids as modulators of proteolytic activity of BACE: involvement of cholesterol, glycosphingolipids, and anionic phospholipids in vitro. J. Biol. Chem. 280: 36815–36823.

    Article  CAS  PubMed  Google Scholar 

  • Karube, H., Sakamoato, M., Arawaka, S., Hara, S., Sato, H., Ren, C.-H., Goto, S., Koyama, S., Wada, M., Kawanami, T., Kurita, K., Kato, T., 2008, N-terminal region of a-synuclein is essential for the fatty acid-induced oligomerization of the molecules. FEBS Lett. 582: 3693–3700.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, T., Yanagisawa, K., 2007, Endosomal accumulation of GM1 ganglioside-bound amyloid beta-protein in neurons of aged monkey brains. Neuroreport 18: 1669–1673.

    Article  CAS  PubMed  Google Scholar 

  • Kirkitadze, M.D., Kowalska, A., 2005, Molecular mechanisms initiating amyloid β-fibril formation in Alzheimer’s disease. Acta Biochim. Pol. 52: 417–423.

    CAS  PubMed  Google Scholar 

  • Klinknera, A.M.., Waites, C.R., Kerns, W.D., Bugelski, P.J., 1995, Evidence of foam cell and cholesterol crystal formation in macrophages incubated with oxidized LDL by fluorescence and electron microscopy. J. Histochem. Cytochem. 43: 1071–1078.

    Google Scholar 

  •  Kölsch, H., Lütjohann, D., Ludwig, M., Schulte, A., Ptok, U., Jessen, F., von Bergmann, K., Rao, M.L., Maier, W., Heun, R., 2002, Polymorphism in the cholesterol 24S-hydroxylase gene is associated with Alzheimer’s disease. Mol. Psych. 7: 899–902.

    Article  CAS  Google Scholar 

  • Koppaka, V., Paul, C., Murray, I.V.J., Axelsen, P.H., 2003, Early synergy between Aβ42 and oxidatively damaged membranes in promoting amyloid fibril formation by Aβ40. J. Biol. Chem. 278: 36277–36284.

    Article  CAS  PubMed  Google Scholar 

  • Koudinov, A.R., Koudinova, N.V., 2001a, Brain cholesterol pathology is the cause of Alzheimer’s disease. Clin. Med. Health Res. Clinmed/2001100005.

    Google Scholar 

  • Koudinov, A.R., Koudinova, N.V., 2001b, Essential role for cholesterol in synaptic plasticity and neuronal degeneration. FASEB J. doi: 10.1096/fj.00-0815fje.

    Google Scholar 

  • Krištofiková, Z., Kopecky, V., Hofbauerova, K., Hovorková, P., Řipová, D., 2008, Complex of amyloid β peptides with 24-hydroxycholesterol and its effect on hemicholinium-3 sensitive carriers. Neurochem. Res. 33: 412–421.

    Article  PubMed  CAS  Google Scholar 

  • Lashuel, H.A., Lansbury, P.T., 2006, Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins. Quart. Rev. Biophys. 39: 167–201.

    Article  CAS  Google Scholar 

  • Lau, T.-L., Gehman, J.D., Wade, J.D., Masters, C.L., Barnham, K.J., Separovic, F., 2007, Cholesterol and clioquinol modulation of Aβ(1-42) interaction with phospholipid bilayers and metals. Biochim. Biophys. Acta 1768: 3135–3144.

    Article  CAS  PubMed  Google Scholar 

  • Lebouvier, T., Perruchini, C., Panachal, M., Potier, M.C., Duyckaerts, C., 2009, Cholesterol in the senile plaque: Often mentioned, never seen. Acta Neuropathol. 117: 31–34.

    Article  CAS  PubMed  Google Scholar 

  • Ledesma, M.D., Dotti, C.G., 2006, Amyloid excess in Alzheimer’s disease: What is cholesterol to be blamed for? FEBS Lett. 580: 5525–5532.

    Article  CAS  PubMed  Google Scholar 

  • Li, L., Cao, D., Garber, D.W., Kim, H., Fukuchi, K., 2003, Association of aortic atherosclerosis with cerebral β-amyloidosis and learning deficits in a mouse model of Alzheimer’s disease. Amer. J. Pathol. 163: 2155–2164.

    CAS  Google Scholar 

  • Liao, G., Yao, Y., Liu, J., Yu, Z., Cheung, S., Xie, A., Liang, X., Bi, X., 2007, Cholesterol accumulation is associated with lysosomal dysfunction and autophagic stress in Npc1-/- mouse brain. Amer. J. Pathol. 171: 962–975.

    Article  CAS  Google Scholar 

  • Lin, M.-S., Chen, L.-Y., Wang, S. S.-S., Chang, Y., Chen, W.-Y., 2008, Examining the levels of ganglioside and cholesterol in cell membrane on attenuating the cytotoxicity of beta-amyloid peptide. Colloid. Surf. B: Biointerfaces 65: 172–177.

    Article  CAS  Google Scholar 

  • Liu, Y., Peterson, D.A., Schubert, D., 1998, Amyloid β peptide alters intracellular vesicle trafficking and cholesterol homeostasis, Proc. Natl. Acad. Sci. USA 95: 13266–13271.

    Article  CAS  PubMed  Google Scholar 

  • Lu, J., Wu, D., Zeng, Y., Sun, D., Hu, B., Shan, Q., Zhang, Z., Fan, S., 2009, Trace amounts of copper exacerbate beta amyloid-induced neourotoxicity in the cholesterol-fed mice through TNF-mediated inflammatory pathway. Brain, Behav. Immunol. 23: 193–203.

    Article  CAS  Google Scholar 

  • Lukiw, W.J., Pappolla, M., Pelaez, R.P., Bazan, N.G., 2005, Alzheimer’s disease – A dysfunction in cholesterol and lipid metabolism. Cell. Mol. Neurobiol. 25: 475–483.

    Article  CAS  PubMed  Google Scholar 

  • Malinchik, S.B., Inyouye, H., Szumowski, K.E., Kirschner, D.A., 1998, Structural analysis of the Alzheimer’s β(1-40) amyloid: Protofilament assembly of tubular fibrils. Biophys. J. 74: 537–545.

    Article  CAS  PubMed  Google Scholar 

  • Martins, I.J., Hone, E., Foster, J.K., Sünram-Lea, S.I., Gnjec, A., Fuller, S.J., Nolan, D., Gandy, S.E., Martins, R.N., 2006, Apolipoprotein E, cholesterol metabolism, diabetes, and the convergence of risk factors for Alzheimer’s disease and cardiovascular disease. Mol. Psychiatry 11: 721–736.

    Article  CAS  PubMed  Google Scholar 

  • Mason, R.P., Walter, M.F., Day, C.A., Jacob, R.F., 2006, Active metabolite of atorvastatin inhibits membrane cholesterol domain formation by an antioxidant mechanism. J. Biol. Chem. 281: 9337–9345.

    Article  CAS  PubMed  Google Scholar 

  • Mast, N., White, M.A., Bjorkhem, I., Johnson, E.F., Stout, C.D., 2008, Crystal structure of substrate-bound and substrate-free cytochrome P450 46A1, the principal cholesterol hydroxylase in the brain. Proc. Natl. Acad. Sci. USA 105: 9546–9551.

    Article  CAS  PubMed  Google Scholar 

  • McLaurin, J., Darabie, A.A., Morrison, M.R., 2002, Cholesterol, a modulator of membrane-associated amyloid-β fibrillogenesis. Ann. NY Acad. Sci. 977: 376–383.

    Article  CAS  PubMed  Google Scholar 

  • Micelli, S., Meleleo, D., Picciarelli, V., Gallucci, E., 2004, Effect of sterols on β-amyloid peptide (AβP 1-40) channel formation and their properties in planar lipid membranes. Biophys. J. 86: 2231–2237.

    Article  CAS  PubMed  Google Scholar 

  • Michikawa, M., 2004, Neurodegenerative disorders and cholesterol. Curr. Alzh. Res. 1: 271–275.

    Article  CAS  Google Scholar 

  • Michikawa, M., 2006, Role of cholesterol in amyloid cascade: cholesterol-dependent modulation of tau phosphorylation and mitochondrial function. Acta Neurol. Scand. Suppl. 114: 21–26.

    Article  Google Scholar 

  • Milton, N.G.N., Harris, J.R., 2009, Polymorphism of amyloid-β fibrils and its effects on human erythrocyte catalase binding. Micron. 40: 800–810.

    Google Scholar 

  • Mizuno, T., Nakata, M., Hironobu, N., Michikawa, M., Wang, R., Haass, C., Yanagisawa, K., 1999, Cholesterol-dependent generation of a seeding amyloid β-protein in cell culture. J. Biol. Chem. 274: 15110–15114.

    Article  Google Scholar 

  • Mori, T., Paris, D., Town, T., Sparks, D.L., Delledonne, A., Crawford, F., Abdullah, L.I., Humphrey, J.A., Dickson, D.W., Mullan, M.J., 2001, Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J. Neuropathol. Exp. Neurol. 60: 778–785.

    CAS  PubMed  Google Scholar 

  • Morishima-Kawashima, M., Han, X., Tanimura, Y., Hamanaka, H., Kobayashi, M., Sakurai, T., Yokayama, M., Wada, K., Nukina, N., Fujita, S.C., Ihara, Y., 2007, Effects of human apolipoprotein E isoforms on the amyloid beta-protein concentration and lipid composition of brain low-density membrane domains. J. Neurochem. 101: 949–958.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, T.J., 2007, Cholesterol oxidation and β-amyloid. In: M.-K. Sun (Ed.), Research Progress in Alzheimer’s Disease and Dementia, Vol. 2, Nova Science Publishers, New York, pp. 137–174.

    Google Scholar 

  • Nelson, T.J., Alkon, D.L., 2005, Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J. Biol. Chem. 280: 7377–7387.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, T.J., Alkon, D.L., 2007, Protection against β-amyloid-induced apoptosis by peptides interacting with β-amyloid. J. Biol. Chem. 282: 31238–31249.

    Article  CAS  PubMed  Google Scholar 

  • Nixon, R.A., 2004, Niemann-Pick type C disease and Alzheimer’s disease. Am. J. Pathol. 164: 757–761.

    PubMed  Google Scholar 

  • Ohm, T.G., Treiber-Held, S., Distl, R., Glöckner, R., Schönheit, B., Tamanai, M., Meske, V., 2003, Cholesterol and tau protein – findings in Alzheimer’s and Niemann Pick C’s disease. Pharmopsychiatry 36: 120–126.

    Article  Google Scholar 

  • Ong, W.Y., Goh, E.W., Lu, X.R., Farooqui, A.A., Patel, S.C., Halliwell, B., 2003, Increase in cholesterol and cholesterol oxidation products, and role of cholesterol oxidation products in kainite-induced neuronal injury. Brain Pathol. 13: 250–262.

    Article  CAS  PubMed  Google Scholar 

  • Olsen, O.F., Dragø, L., 2000, High density lipoprotein inhibits assembly of amyloid beta-pepptides into fibrils. Biochem. Biophys. Res. Commun. 270: 62–66

    Article  CAS  Google Scholar 

  • Opazo, C., Huang, X., Cherny, R.A., Moir, R.D., Roher, A.E., White, A.R., Cappai, R., Masters, C.I., Tanzi, R.E., Inestrosa, N.C., Bush, A.I., 2002, Metalloenzyme-like activity of Alzheimer’s disease β-amyloid. J. Biol. Chem. 277: 40302–40308.

    Article  CAS  PubMed  Google Scholar 

  • Orr, J.D., 2008, Statins in the spectrum of neurological diseases. Curr. Atheroscler. Rep. 10: 11–18.

    Article  CAS  PubMed  Google Scholar 

  • Panza, F., D’Introno, A., Colacicco, A.M., Capruso, C., Pichichero, G., Capruso, S.A., Capruso, A., Solfrizzi, V., 2005, Lipid metabolism in cognitive decline and dementia. Brain Res. Rev. 52: 275–292.

    Google Scholar 

  • Papassotiropoulos, A., Streffer, J., Tsolaki, M., Schmid, S., Thal, D., Nicosa, F., Iakovidou, V., Maddalena, A., Lütjohan, D., Ghebremedhin, E., Hegi, T., Pasch, T., Träxler, M., Brühl, A., Benussi, L., Boinetti, G., Braak, H., Mnitsch, R.M., Hock, C., 2003, Increased brain β-amyloid load, phosphorylated tau, and risk of Alzheimer’s disease associated with an intronic CYP46 polymorphism. Arch. Neurol. 60: 29–35.

    Article  PubMed  Google Scholar 

  • Papassotiropoulos, A., Wollmer, A., Tsolaki, M., Brunner, F., Molyva, D., Lütjohann, D., Nitsch, R.M., Hock, C., 2005, A cluster of cholesterol-related genes confers susceptibility for Alzheimer’s disease. J. Clin. Psych. 66: 940–947.

    Article  CAS  Google Scholar 

  • Pappolla, M.A., Smith, M.A., Bryant-Thomas, T., Bazan, N., Petanceska, S., Perry, G., Thal, L.J., Sano, M., Refolo, L.M., 2002, Cholesterol, oxidative stress and Alzheimer’s disease: Expanding the horizons of pathogenesis. Free Rad. Biol. Med. 33: 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, S.E., Woodruff, E.A., Liang, P., Patten, M., Broadie, K., 2008, Neuronal loss of Drosophila NCP1a causes cholesterol aggregation and age-progressive neurodegeneration. J. Neurosci. 28: 6569–6582.

    Article  CAS  PubMed  Google Scholar 

  • Prasanthi, J.R.P., Huls, A., Thomasson, S., Thompson, A., Schommer, E., Ghribi, O., 2009, Differential effects of 24-hydroxycholesterol and 27-hydroxycholesterolon β-amyloid precursor protein levels and processing in human neuroblastoma SH-SY5Y cells. Mol. Neurodegen. 4:1, doi:10.1186/1750-1326-4-1

    Article  CAS  Google Scholar 

  • Prasanthi, J.R.P., Schommer, E., Thomasson, S., Thompson, A., Feist, G., Ghribi, O., 2008, Regulation of beta-amyloid levels in the brain of cholesterol-fed rabbit, a model system for sporadic Alzheimer’s disease. Mech. Ageing Dev. 129: 649-655.

    Article  CAS  Google Scholar 

  • Prasher, V.P., Airuehia, E., Patel, A., Haque, M.S., 2008, Total serum cholesterol levels and Alzheimer’s dementia in patients with Down syndrome. Int. J. Geriatr. Psychiatry. 23: 937–942.

    Article  CAS  PubMed  Google Scholar 

  • Puglielli, L., Friedlich, A.L., Setchell, K.D.R., Nagano, S., Opazo, C., Cherny, R.A., Barnham, K.J., Wade, J.D., Melov, S., Kovacs, D.M., Bush, A.I., 2005, Alzheimer disease β-amyloid activity mimics cholesterol oxidase. J. Clin. Invest. 115: 2556–2563.

    Article  CAS  PubMed  Google Scholar 

  • Qui, L., Lewis, A., Como, J., Vaughn, M.W., Huang, J., Somerharju, P., Virtanen, J., Cheng, K.H., 2009, Cholesterol modulates the interaction of β-amyloid peptide with lipid bilayers. Biophys. J. 96: 4299–4307.

    Article  CAS  Google Scholar 

  • Rabzelj, S., Viero, G., Gutierrez-Aguirre, I., Turk, V., Dalla Serra, M., Anderluh, G., Zerovnik, E., 2008, Interaction with model membranes and pore formation by human stefin B: Studying the native and prefibrillar states. FEBS J. 275: 2455–2466.

    Article  CAS  PubMed  Google Scholar 

  • Raffaï, R.L., Weisgraber, K.H., 2003, Cholesterol: From heart attacks to Alzheimer’s disease. J. Lipid Res. 44: 1423–1430.

    Article  PubMed  CAS  Google Scholar 

  • Rahman, A., Akterin, S., Flores-Morales, A., Crisby, M., Kivipelto, M., Schultzberg, M., Cedazo-Minguez, A., 2005, High cholesterol diet induced tau hyperphosphorylation in apolipoprotein E deficient mice. FEBS Lett. 579: 6411–6416.

    Article  CAS  PubMed  Google Scholar 

  • Rapp, A., Gmeineer, B., Hüttinger, M., 2006, Implication of apoE isoforms in cholesterol metabolism by primary rat hippocampal neurons and astrocytes. Biochimie 88: 473–483.

    Article  CAS  PubMed  Google Scholar 

  • Rapp, J.H., Pan, X.M., Neumann, M., Hong, M., Hollenbeck, K., Liu, J., 2008, Microemboli composed of cholesterol crystals disrupt the blood-brain barrier and reduce cognition. Stroke 39: 2354–2361.

    Article  CAS  PubMed  Google Scholar 

  • Reid, P.C., Sakashita, N., Sguii, S., Ohno-Iwashita, Y., Shimada, Y., Hickey, W.F., Chang, T.-Y., 2004, A novel cholesterol stain reveals early neuronal cholesterol accumulation in the Niemann-Pick type C1 mouse brain. J. Lipid. Res. 45: 582–591.

    Article  CAS  PubMed  Google Scholar 

  • Reimann, E.M., Chen, K., Caselli, R.J., Alexander, G.E., Bandy, D., Adamson, J.L., Lee, W., Cannon, A., Stephan, E.A., Stephan, D.A., Papassotiropoulos, A., 2008, Cholesterol-related genetic scores are associated with hypometabolism in Alzheimer’s-affected brain regions. Neuroimage 40: 1214–1221.

    Article  Google Scholar 

  • Reiss, A.B., 2005, Cholesterol and apolipoprotein E in Alzheimer’s disease. Am. J. Alzheimer’s Dis Other Demen, 20: 91–96.

    Article  Google Scholar 

  • Rodríguez-Rodríguez, E., Mateo, I., Infante, J., Llorca, J., García-Gorostiaga, I., Vázquez-Higuera, J.L., Sánchez-Juan, P., Berciano, J., Onofre, C., 2009 Interaction between HMGCR and ABCA1 cholesterol-related genes modulates Alzheimer’s disease risk. Brain Res. 1280: 1660171.

    Article  CAS  Google Scholar 

  • Saito, Y., Suzuki, K., Nanba, E., Tamamoto, T., Ohno, K., Murayama, S., 2002, Niemann-Pick type C disease: Accelerated neurofibrillary tangle formation and amyloid βdeposition associated with apolipoprotein E ε4 homozygosity. Ann. Neurol. 52: 351–355.

    Article  CAS  PubMed  Google Scholar 

  • Sathishkumar, K., Xi, X., Martin, R., Uppu, R.M., 2007, Cholesterol secoaldehyde, an oxonation product of cholesterol, induces amyloid aggregation and apoptosis in murine GT1-7 hypothalamic neurons. J. Alzheimer’s Dis. 11: 261–274.

    CAS  Google Scholar 

  • Scheinost, J.C., Wang, H., Boldt, G.E., Offer, J., Wentworth, Jr., P., 2008, Cholesterol seco-sterol-induced aggregation of methylated amyloid-β peptides – Insights into aldehyde fibrillization of amyloid-β. Angew. Chem. 120: 3983–3986.

    Article  Google Scholar 

  • Schneider, A., Schulz-Schaeffer, W., Hartmann, T., Schultz, J.B., Simons, M., 2006, Cholesterol depletion reduces aggregation of amyloid-beta peptide in hippocampal neurons. Neurobiol. Dis. 23: 573–577.

    Article  CAS  PubMed  Google Scholar 

  • Schöneich, C., 2002, Redox processes of methionine relevant to β-amyloid oxidation and Alzheimer’s disease. Arch. Biochem. Biophys. 397: 370–376.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, B., Liebisch, G., Grandl, M., Werner, T., Barlage, S., Schmitz, G., 2007, β-Amyloid (Aβ40, Aβ42) binding to modified LDL accelerates macrophage foam cell formation. Biochim. Biophys. Acta 1771: 1335–1344.

    CAS  PubMed  Google Scholar 

  • Scott Kim, W., Chan, S.L., Hill, A.F., Guillemin, G.J., Garner, D., 2009, Impact of 27-hydroxycholesterol on amyloid-β production and ATP-binding cassette transporter expression in primary human neurons. J. Alzheimer’s Dis. 16: 121–131.

    Google Scholar 

  • Shobab, L.A., Hsiung, G.-Y.R., Feldman, H.H., 2005, Cholesterol in Alzheimer’s disease. Lancet Neurol. 4: 841–852.

    Article  CAS  PubMed  Google Scholar 

  • Simons, M., Keller, P., Dichgans, J., Schulz, J.B., 2001, Cholesterol and Alzheimer’s disease. Neurology 57: 1089–1093.

    CAS  PubMed  Google Scholar 

  • Simons, M., Keller, P., De Strooper, B., Beyruther, K., Dotti, C.G., Simons, K., 1998, Cholesterol depletion inhibits the generation of beta-amyloid in hippocampal neurons. Proc. Natl. Acad. Sci. USA 95: 6460–6464.

    Article  CAS  PubMed  Google Scholar 

  • Sinha, N., Tsai, C.-J., Nussinov, R., 2001, A proposed structural model for amyloid fibril elongation: Domain swapping form an interdigitating β-structure polymer. Protein Eng. 14: 93–103.

    Article  CAS  PubMed  Google Scholar 

  • Smith, M.E., 2001, Phagocytic properties of microglia in vitro: implications for a role in multiple sclerosis and EAE. Microsc. Res. Tech. 54: 81–94.

    Article  CAS  PubMed  Google Scholar 

  • Sparks, D.L., 2004, Cholesterol, copper, and accumulation of thioflavine S-reactive Alzheimer’s-like amyloid β in rabbit brain. J. Mol. Neurosci. 24: 97–104.

    Article  CAS  Google Scholar 

  • Sparks, D.L., 2007, Cholesterol metabolism and brain amyloidosis: Evidence for a role of copper in the clearance of Aβ through the liver. Curr. Alz. Res. 4: 165–169.

    Article  CAS  Google Scholar 

  • Sparks, D.L., Martin, T.A., Gross, D.R., Hunsaker, J.C., 2000, Link between heart disease, cholesterol, and Alzheimer’s disease: A review. Microsc. Res. Techn. 50: 287–290.

    Article  CAS  Google Scholar 

  • Sparks, D.L., Schreurs, B.G., 2003, Trace amounts of copper in water induce β-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 100: 11065–11069.

    Article  CAS  PubMed  Google Scholar 

  • Srisailam, S., Wang, H.-M., Kumart, T.K.S., Rajalingam, D., Sivaraja, V., Sheu, H.-S., Chang, Y.-C., Yu, C., 2002, Amyloid-like fibril formation in an all β-barrel protein involves the formation of partially structured intermediate(s). J. Biol. Chem. 277: 19027–19036.

    Article  CAS  PubMed  Google Scholar 

  • Stadler, M., Phinney, A., Probst, A., Sommer, B., Staufenbiel, M., Jucker, M., 1999, Association of microglia with amyloid plaques in brains of APP23 transgenic mice. Amer. J. Pathol. 154: 1673–1684.

    Google Scholar 

  • Stanyer, L., Betteridge, D.J., Smith, C.C.T., 2002, An investigation into the mechanisms mediating plasma lipoprotein-potentiated β-amyloid fibrillogenesis. FEBS Lett. 518: 72–78.

    Article  CAS  PubMed  Google Scholar 

  • Stewart, C.R., Wilson, L.M., Zhang, Q., Pham, C.L.L., Waddington, L.J., Staples, M.K., Stapleton, D., Kelly, J.W., Howlett, G.J., 2007, Oxidized cholesterol metabolites found in human atherosclerotic lesions promote apolipoprotein C-II amyloid fibril formation. Biochemistry 46: 5552–5561.

    Article  CAS  PubMed  Google Scholar 

  • Streit, W.J., Sparks, D.L., 1997, Activation of microglia in the brains of humans with heart disease and hypercholesterolemic rabbits. J. Mol. Med. 75: 1432–1440.

    Article  Google Scholar 

  • Stromer, T., Serpell, L.C., 2005, Structure and morphology of the Alzheimer’s amyloid fibril. Microsc. Res. Techn. 67: 210–217.

    Article  CAS  Google Scholar 

  • Subashinghe, S., Unabia, S., Barrow, C.J., Mok, S.S., Aguilar, M.-I., Small, D.H., 2003, Cholesterol is necessary both for the toxic effect of Aβ peptides on vascular smooth muscle cells and for Aβ binding to vascular smooth muscle cell membranes. J. Neurochem. 84: 685–694.

    Google Scholar 

  • Sullivan, P.M., Mace, B.E., Estrada, J.C., Schmechel, D.E., Alberts, M.J., 2008, Human apolipoprotein E4 targeted replacement mice show increased prevalence of intracerebral hemorrhage associated with vascular amyloid deposition. J. Stroke Cerebrovasc. Dis. 17: 303–311.

    Article  PubMed  Google Scholar 

  • Tamamizu-Kato, S., Cohen, J.K., Drake, C.B., Kosaraju, M.G., Drury, J., Narayanaswami, V., 2008, Interaction of amyloid β peptide compromises the lipid binding function of apolipoprotein E, Biochemistry, 47: 5225–5234.

    Article  CAS  PubMed  Google Scholar 

  • Tashima, Y., Oe, R., Lee, S., Sugihara, G., Chambers, E.J., Takahashi, M., Yamada, T., 2004, The effect of cholesterol and monosialoganglioside (GM1) on the release and aggregation of amyloid β-peptide from liposomes prepared from brain membrane-like lipids. J. Biol. Chem. 279: 17587–17595.

    Article  CAS  PubMed  Google Scholar 

  • Tedde, A., Rotondi, M., Cellini, E., Bagnoli, S., Muratore, L., Nacmias, B., Sorbi, S., 2006, Lack of association between the CYP46 gene polymorphism and Italian late-onset sporadic Alzheimer’s disease. Neurobiol. Aging 27: 773.e1-773.e3.

    Google Scholar 

  • Thirumangalakudi, L., Prakasam, A., Zhang, R., Bimonte-Nelson, H., Sambamurti, K., Kindy, M.S., Bhat, N.R., 2008, High cholesterol-induced neuroinflammation and amyloid precursor protein processing correlate with loss of working memory in mice. J. Neurochem. 106: 475–485.

    Article  CAS  PubMed  Google Scholar 

  • Tong, X.-K., Nicolakakis, N., Fernandes, P., Ongali, B., Brouillette, J., Quirion, R., Hamel, E., 2009. Simvastatin improves cerebrovascular function and counters soluble amyloid-beta, inflammation and oxidative stress in aged APP mice. Neurobiol. Dis. 35: 406–414.

    Article  CAS  PubMed  Google Scholar 

  • Turkoglu, O.F., Erglu, H., Okutan, O., Gurcan, O., Bodur, E., Sargon, M.F., Öner, L., Beskonakh, E., 2008, Atorvastatin efficiency after traumatic brain injury in rats. Surgical Neurol. 72: 146–152.

    Google Scholar 

  • Vaya, J., Schipper, H.M., 2007, Oxysterols, cholesterol homeostasis, and Alzheimer’s disease. J, Neurochem. 102: 1727–1737.

    Article  CAS  Google Scholar 

  • Wakabayashi, M., Matsuzaki, K., 2007, Formation of amyloids by Aβ-(1-42) on NGF-differentiated PC12 cells: Roles of gangliosides and cholesterol. J. Mol. Biol. 371: 924–933.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Muneton, S., Sjövall, J., Jovanovic, J.N., Griffiths, W.J., 2008, The effect of 24S-hydroxycholesterol on cholesterol homeostasis in neurons: Quantitative changes to the cortical neuron proteome. J. Proteome Res. 7: 1606–1614.

    Article  CAS  PubMed  Google Scholar 

  • White, M.A., Mast, N., Bjorkhem, I., Johnson, E.F., Stout, C.D., Pikuleva, I.A., 2008, Use of complementary cation and anion heavy-atom salt derivatives to solve the structure of cytochrome P450 46A1. Acta Cryst. D 64: 487–495.

    Article  CAS  Google Scholar 

  • Wolozin, B., 2004, Cholesterol and the biology of Alzheimer’s disease, Neuron 41: 7–10.

    Article  CAS  PubMed  Google Scholar 

  • Wolozin, B., Kellman, W., Ruosseau, P., Celesia, G.G., Siegel, G., 2000, Decreased prevalence of Alzheimer disease associated with 3-hydroxy-3-methylglutaryl Coenzyme A reductase inhibitors. Arch. Neurol. 57: 1439–1443.

    Article  CAS  PubMed  Google Scholar 

  • Wood, W.G., Schroeder, F., Igbavboa, U., Avdulov, N.A., Chochina, S.V., 2002, Brain membrane cholesterol domains, aging and amyloid beta-peptides. Neurobiol. Aging 23: 685–694.

    Article  CAS  PubMed  Google Scholar 

  • Xiong, H., Callaghan, D., Jones, A., Walker, D.G., Lue, L.-F., Beach, T.G., Sue, L.I., Woulfe, J., Xu, H., Stanimirovic, D.B., Zhang, W., 2008, Cholesterol retention in Alzheimer’s brain is responsible for high β- and γ-secretase activities and Aβ production. Neurobiol. Dis. 29: 422–437.

    Article  CAS  PubMed  Google Scholar 

  • Xue, Q.-S., Sparks, L.D., Streit, W.J., 2007, Microglial activation in the hippocampus of hypercholesterolemic rabbits occurs independent of increased amyloid production. J. Neuroinflamm. doi: 10.1186/1743-2094-4-20.

    Google Scholar 

  • Yamazaki, T., Chang, T.Y., Haass, C., Ihara, Y., 2001, Accumulation and aggregation of amyloid beta-protein in late endosomes of Niemann-Pick type C cells. J. Biol. Chem. 276: 4454–4460.

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa, K., 2005, Cholesterol and amyloid β fibrillogenesis. In: Harris, J.R. and Fahrenholz, F. (eds.), Alzheimer’s Disease: Cellular and Molecular Aspects of Amyloid β, Springer, New York, pp.179–202.

    Google Scholar 

  • Yanagisawa, K., 2007, Role of gangliosides in Alzheimer’s disease. Biochim. Biophys. Acta 1768: 1943–1951.

    Article  CAS  PubMed  Google Scholar 

  • Yao, Z.-X., Papadopoulos, V., 2002, Function of β-amyloid in cholesterol transport: A lead to neurotoxicity. FASEB J. 16: 1677–1679.

    CAS  PubMed  Google Scholar 

  • Yao, Z.-X., Brown, R.C., Teper, G., Greeson, J., Papadopoulos, V., 2002, 22R-hydroxycholesterol protects neuronal cells from β-amyloid-induced cytotoxicity by binding to β-amyloid peptide. J. Neurochem. 83: 1110–1119.

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto, N., Matsubara, T., Sato, T., Yanagisawa, K., 2008, Age-dependent high-density clustering of GM1 ganglioside at presynaptic neuritic terminals promotes amyloid beta protein fibrillogenesis. Biochim. Biophys. Acta 1778: 2717–2726.

    Article  CAS  PubMed  Google Scholar 

  • Yuyama, K., Yamamoto, N., Yanagisawa, K., 2008, Accelerated release of exosome-associated GM1 ganglioside (GM1) by endocytic pathway abnormality: Another putative pathway for GM1-induced amyloid fibril formation. J. Neurochem. 105: 217–224.

    Article  CAS  Google Scholar 

  • Yip, C.M., McLaurin, J., 2001, Amyloid-β peptide assembly: A critical step in fibrillogenesis and membrane disruption. Biophys. J. 80: 1359–1371.

    Article  CAS  PubMed  Google Scholar 

  • Yip, C.M., Elton, E.A., Darabie, A.A., Morrison, M.R., McLaurin, J., 2001, Cholesterol, a modulator of membrane-associated Aβ-fibrillogenesis and neurotoxicity. J. Mol. Biol. 311: 723–734.

    Article  CAS  PubMed  Google Scholar 

  • Yoshiike, Y., Kayed, R., Milton, S.C., Takashima, A., Clabe, C.G., 2007, Pore-forming proteins share structural and functional homology with amyloid oligomers. Neuromol. Med. 9: 270–275.

    Article  CAS  Google Scholar 

  • Yoshimoto, N., Tasaki, M., Shimanouchi, T., Umakoshi, H., Kuboi, R., 2005, Oxidation of cholesterol catalyzed by amyloid beta-peptide (Abeta)-Cu complex on lipid membrane. J. Biosci. Bioeng. 100: 455–459.

    Article  Google Scholar 

  • Zamrini, E., McGwin, G., Roseman, J.M., 2004, Association between statin use and Alzheimer’s disease. Neuroepidemiology 23: 94–98.

    Article  PubMed  Google Scholar 

  • Zatta, P., Zambenedetti, P., Stella, M.P., Licastro, F., 2002, Astrocytosis, microgliosis, metallothionein-I-II and amyloid expression in high cholesterol-fed rabbits, J. Alzheimer’s Dis. 4:1–9.

    Google Scholar 

  • Zelcer, N., Khanlou, N., Clare, R., Jiang, Q., Reed-Geaghan, E.G., Landreth, G.E., Vinters, H.V., Tontonoz, P., 2007, Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver X receptors. Proc. Natl. Acad. Sci. USA 104: 10601–10606.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Powers, E.T., Nieva, J., Huff, M.E., Dendle, M.A., Bieschke, J., Glabe, C.G., Eschenmoser, A., Wentworth, Jr., P., Lerner, R.A., Kelly, J.W., 2004, Metabolite-initiated protein misfolding may trigger Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 101: 4752–4757.

    Article  CAS  PubMed  Google Scholar 

  • Zinser, E.G., Hartmann, T., Grimm, M.O.W., 2007, Amyloid beta-protein and lipid metabolism. Biochim. Biophys. Acta 1768: 1991–2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Robin Harris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Harris, J.R., Milton, N.G. (2010). Cholesterol in Alzheimer’s Disease and other Amyloidogenic Disorders. In: Harris, J. (eds) Cholesterol Binding and Cholesterol Transport Proteins:. Subcellular Biochemistry, vol 51. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-8622-8_2

Download citation

Publish with us

Policies and ethics