Skip to main content

TRP Channels in Skeletal Muscle: Gene Expression, Function and Implications for Disease

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 704))

Abstract

Besides the well known voltage-gated Ca2+ channels skeletal muscle fibres contain several non-voltage gated Ca2+ conducting cation channels. They have been physiologically characterized as stretch activated, store operated and Ca2+ leak channels. TRP channels are good candidates to account for these sarcolemmal channels and Ca2+ influx pathways or at least contribute to the responsible macromolecular complexes. Several members of the TRPC, TRPV and TRPM subfamilies of TRP channels are expressed in skeletal muscle as shown by RT-PCR, Western blot and immunohistochemistry. The most prominent and consistently found are TRPC1, C3, C4 and C6, TRPV2 and V4 as well as TRPM4 and M7. However, the precise function of individual channels is largely unknown. Linking physiologically characterized channels of the muscle fibre membrane to TRP channel proteins has been a major challenge during the last years. It has been successful only in a few cases and is complicated by the fact that some channels have dual functions in cultured, immature muscle cells and adult fibres. The best characterized TRP channel in skeletal muscle is TRPC1, a small-conductance channel of the sarcolemma. It is needed for Ca2+ homeostasis during sustained contractile muscle activity. In addition to certain physiological functions TRP channels seem to be involved in the pathomechanisms of muscle disorders. There is a broad body of evidence that dysregulation of Ca2+ conducting channels plays a key role in the pathomechanism of Duchenne muscular dystrophy. Lack of the cytoskeletal protein dystrophin or δ-sarcoglycan, seems to disturb the function of one or several Ca2+ channels of the muscle fibre membrane, leading to pathological dystrophic changes. Almost 10 different TRP channels have been detected in skeletal muscle. They seem to be involved in muscle development, Ca2+ homeostasis, Ca2+ signalling and in disease progression of certain muscle disorders. However, we are still at the beginning of understanding the impact of TRP channel functions in skeletal muscle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yeung EW, Whitehead NP, Suchyna TM, Gottlieb PA, Sachs F, Allen DG (2005) Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J Physiol 562:367–380

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Boittin FX, Petermann O, Hirn C, Mittaud P, Dorchies OM, Roulet E, Rüegg UT (2006) Ca2+-independent phospholipase A2 enhances store-operated Ca2+ entry in dystrophic skeletal muscle fibers. J Cell Sci 119:3733–3742

    Article  CAS  PubMed  Google Scholar 

  3. Dirksen RT (2009) Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle. J Physiol 587:3139–3147

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Edwards JN, Murphy RM, Cully TR, von Wegner F, Friedrich O, Launikonis BS (2010) Ultra-rapid activation and deactivation of store-operated Ca2+ entry in skeletal muscle. Cell Calcium 47:458–467

    Article  CAS  PubMed  Google Scholar 

  5. Launikonis BS, Rios E (2007) Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. J Physiol 583:81–97

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Alderton JM, Steinhardt RA (2000) How calcium influx through calcium leak channels is responsible for the elevated levels of calcium-dependent proteolysis in dystrophic myotubes. Trends Cardiovasc Med 10:268–272

    Article  CAS  PubMed  Google Scholar 

  7. Franco-Obregon A, Lansman JB (2002) Changes in mechanosensitive channel gating following mechanical stimulation in skeletal muscle myotubes from the mdx mouse. J Physiol 539:391–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Ducret T, Vandebrouck C, Cao ML, Lebacq J, Gailly P (2006) Functional role of store-operated and stretch-activated channels in murine adult skeletal muscle fibres. J Physiol 575:913–924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Vandebrouck A, Sabourin J, Rivet J, Balghi H, Sebille S, Kitzis A, Raymond G, Cognard C, Bourmeyster N, Constantin B (2007) Regulation of capacitative calcium entries by alpha1-syntrophin: association of TRPC1 with dystrophin complex and the PDZ domain of alpha1-syntrophin. FASEB J 21:608–617

    Article  CAS  PubMed  Google Scholar 

  10. De Backer F, Vandebrouck C, Gailly P, Gillis JM (2002) Long-term study of Ca2+ homeostasis and of survival in collagenase-isolated muscle fibres from normal and mdx mice. J Physiol 542:855–865

    Article  PubMed Central  PubMed  Google Scholar 

  11. Tutdibi O, Brinkmeier H, Rüdel R, Föhr KJ (1999) Increased calcium entry into dystrophin-deficient muscle fibres of MDX and ADR-MDX mice is reduced by ion channel blockers. J Physiol 515:859–868

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Vandebrouck C, Martin D, Colson-Van Schoor M, Debaix H, Gailly P (2002) Involvement of TRPC in the abnormal calcium influx observed in dystrophic (mdx) mouse skeletal muscle fibers. J Cell Biol 158:1089–1096

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Krüger J, Kunert-Keil C, Bisping F, Brinkmeier H (2008) Transient receptor potential cation channels in normal and dystrophic mdx muscle. Neuromuscul Disord 18:501–513

    Article  PubMed  Google Scholar 

  15. Kunert-Keil C, Bisping F, Krüger J, Brinkmeier H (2006) Tissue-specific expression of TRP channel genes in the mouse and its variation in three different mouse strains. BMC Genomics 7:159

    Article  PubMed Central  PubMed  Google Scholar 

  16. Lee EH, Cherednichenko G, Pessah IN, Allen PD (2006) Functional coupling between TRPC3 and RyR1 regulates the expressions of key triadic proteins. J Biol Chem 281:10042–10048

    Article  CAS  PubMed  Google Scholar 

  17. Sabourin J, Lamiche C, Vandebrouck A, Magaud C, Rivet J, Cognard C, Bourmeyster N, Constantin B (2009) Regulation of TRPC1 and TRPC4 cation channels requires an alpha1-syntrophin-dependent complex in skeletal mouse myotubes. J Biol Chem 284:36248–36261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Formigli L, Sassoli C, Squecco R, Bini F, Martinesi M, Chellini F, Luciani G, Sbrana F, Zecchi-Orlandini S, Francini F, Meacci E (2009) Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation. J Cell Sci 122:1322–1333

    Article  CAS  PubMed  Google Scholar 

  19. Louis M, Zanou N, Van Schoor M, Gailly P (2008) TRPC1 regulates skeletal myoblast migration and differentiation. J Cell Sci 121:3951–3959

    Article  CAS  PubMed  Google Scholar 

  20. Santillan G, Katz S, Vazquez G, Boland RL (2004) TRPC3-like protein and vitamin D receptor mediate 1alpha,25(OH)2D3-induced SOC influx in muscle cells. Int J Biochem Cell Biol 36:1910–1918

    Article  CAS  PubMed  Google Scholar 

  21. Flockerzi V, Jung C, Aberle T, Meissner M, Freichel M, Philipp SE, Nastainczyk W, Maurer P, Zimmermann R (2005) Specific detection and semi-quantitative analysis of TRPC4 protein expression by antibodies. Pflügers Arch 451:81–86

    Article  CAS  PubMed  Google Scholar 

  22. Iwata Y, Katanosaka Y, Arai Y, Komamura K, Miyatake K, Shigekawa M (2003) A novel mechanism of myocyte degeneration involving the Ca2+-permeable growth factor-regulated channel. J Cell Biol 161:957–967

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE, McNulty S (2006) Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res 26:159–178

    Article  CAS  PubMed  Google Scholar 

  24. Franco-Obregon A Jr., Lansman JB (1994) Mechanosensitive ion channels in skeletal muscle from normal and dystrophic mice. J Physiol 481:299–309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Zanou N, Shapovalov G, Louis M, Tajeddine N, Gallo C, Van Schoor M, Anguish I, Cao ML, Schakman O, Dietrich A, Lebacq J, Ruegg U, Roulet E, Birnbaumer L, Gailly P (2010) Role of TRPC1 channel in skeletal muscle function. Am J Physiol Cell Physiol 298:C149–C162

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Berbey C, Weiss N, Legrand C, Allard B (2009) Transient receptor potential canonical type 1 (TRPC1) operates as a sarcoplasmic reticulum calcium leak channel in skeletal muscle. J Biol Chem 284:36387–36394

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Stiber JA, Zhang ZS, Burch J, Eu JP, Zhang S, Truskey GA, Seth M, Yamaguchi N, Meissner G, Shah R, Worley PF, Williams RS, Rosenberg PB (2008) Mice lacking homer 1 exhibit a skeletal myopathy characterized by abnormal TRP channel activity. Mol Cell Biol 28(8):2637–2647

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Turner PR, Westwood T, Regen CM, Steinhardt RA (1988) Increased protein degradation results from elevated free calcium levels found in muscle from mdx mice. Nature 335:735–738

    Article  CAS  PubMed  Google Scholar 

  29. Rosenberg P, Hawkins A, Stiber J, Shelton JM, Hutcheson K, Bassel-Duby R, Shin DM, Yan Z, Williams RS (2004) TRPC3 channels confer cellular memory of recent neuromuscular activity. Proc Natl Acad Sci USA 101:9387–9392

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Lanner JT, Bruton JD, Assefaw-Redda Y, Andronache Z, Zhang SJ, Severa D, Zhang ZB, Melzer W, Zhang SL, Katz A, Westerblad H (2009) Knockdown of TRPC3 with siRNA coupled to carbon nanotubes results in decreased insulin-mediated glucose uptake in adult skeletal muscle cells. FASEB J 23:1728–1738

    Article  CAS  PubMed  Google Scholar 

  31. Kuwahara K, Wang Y, McAnally J, Richardson JA, Bassel-Duby R, Hill JA, Olson EN (2006) TRPC6 fulfills a calcineurin signaling circuit during pathologic cardiac remodeling. J Clin Invest 116:3114–3126

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Iwata Y, Katanosaka Y, Arai Y, Shigekawa M, Wakabayashi S (2009) Dominant-negative inhibition of Ca2+ influx via TRPV2 ameliorates muscular dystrophy in animal models. Hum Mol Genet 18:824–834

    CAS  PubMed  Google Scholar 

  33. Zanou N, Iwata Y, Schakman O, Lebacq J, Wakabayashi S, Gailly P (2009) Essential role of TRPV2 ion channel in the sensitivity of dystrophic muscle to eccentric contractions. FEBS Lett 583:3600–3604

    Article  CAS  PubMed  Google Scholar 

  34. Lange T, Pritschow B, Kasch J, Kunert-Keil C, Brinkmeier H (2009) Functional TRPV4 channels are expressed in mouse skeletal muscle an can modulate background Ca2+ entry and muscle fatigue. Acta Physiol Scand 195:23

    Google Scholar 

  35. Vennekens R, Nilius B (2007) Insights into TRPM4 function, regulation and physiological role. Handb Exp Pharmacol 179:269–285

    Article  CAS  PubMed  Google Scholar 

  36. Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Penner R, Fleig A (2007) The Mg2+ and Mg2+-nucleotide-regulated channel-kinase TRPM7. Handb Exp Pharmacol 179:313–328

    Article  CAS  PubMed  Google Scholar 

  38. Wolf FI (2004) TRPM7: channeling the future of cellular magnesium homeostasis? Sci STKE 2004:pe23

    Google Scholar 

  39. Emery AEH, Emery MHL (1995) Refining the clinical picture. In: Emery AEH, Emery MHL (ed) The history of a genetic disease: Duchenne muscular dystrophy or Meryons´s disease. The Royal Society of Medicine Press Limited, London, 89–99

    Google Scholar 

  40. Constantin B, Sebille S, Cognard C (2006) New insights in the regulation of calcium transfers by muscle dystrophin-based cytoskeleton: implications in DMD. J Muscle Res Cell Motil 27:375–386

    Article  CAS  PubMed  Google Scholar 

  41. Hopf FW, Turner PR, Steinhardt RA (2007) Calcium misregulation and the pathogenesis of muscular dystrophy. Subcell Biochem 45:429–464

    Article  CAS  PubMed  Google Scholar 

  42. Allen DG, Gervasio OL, Yeung EW, Whitehead NP (2010) Calcium and the damage pathways in muscular dystrophy. Can J Physiol Pharmacol 88:83–91

    Article  CAS  PubMed  Google Scholar 

  43. Berchtold MW, Brinkmeier H, Müntener M (2000) Calcium ion in skeletal muscle: its crucial role for muscle function, plasticity, and disease. Physiol Rev 80:1215–1265

    CAS  PubMed  Google Scholar 

  44. Michele DE, Campbell KP (2003) Dystrophin-glycoprotein complex: post-translational processing and dystroglycan function. J Biol Chem 278:15457–15460

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Brinkmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Brinkmeier, H. (2011). TRP Channels in Skeletal Muscle: Gene Expression, Function and Implications for Disease. In: Islam, M. (eds) Transient Receptor Potential Channels. Advances in Experimental Medicine and Biology, vol 704. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0265-3_39

Download citation

Publish with us

Policies and ethics