Skip to main content
Log in

Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability

  • Mini-review
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Most starch hydrolases and related enzymes belong to the α-amylase family which contains a characteristic catalytic (β/α)8-barrel domain. Currently known primary structures that have sequence similarities represent 18 different specificities, including starch branching enzyme. Crystal structures have been reported in three of these enzyme classes: the α-amylases, the cyclodextrin glucanotransferases, and the oligo-1,6-glucosidases. Throughout the α-amylase family, only eight amino acid residues are invariant, seven at the active site and a glycine in a short turn. However, comparison of three-dimensional models with a multiple sequence alignment suggests that the diversity in specificity arises by variation in substrate binding at the β→α loops. Designed mutations thus have enhanced transferase activity and altered the oligosaccharide product patterns of α-amylases, changed the distribution of α-, β- and γ-cyclodextrin production by cyclodextrin glucanotransferases, and shifted the relative α-1,4:α-1,6 dual-bond specificity of neopullulanase. Barley α-amylase isozyme hybrids and Bacillus α-amylases demonstrate the impact of a small domain B protruding from the (β/α)8-scaffold on the function and stability. Prospects for rational engineering in this family include important members of plant origin, such as α-amylase, starch branching and debranching enzymes, and amylomaltase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CGTase:

cyclodextrin glucanotransferase

SBD:

starch binding domain

TAA:

taka-amylase A

TIM:

triose-phosphate isomerase. The mutations are described with the one-letter code, i.e. D164A is a mutant in which A in the mutant is substituted for D in the wild-type.

References

  1. Ajandouz EH, Abe J, Svensson B, Marchis-Mouren G: Barley malt α-amylase. Purification, action pattern, and subsite mapping of isozyme 1 and two members of the isozyme 2 subfamily using p-nitrophenylated maltooligosaccharide substrates. Biochim Biophys Acta 1159: 193–202 (1992).

    PubMed  Google Scholar 

  2. Aleshin A, Golubev A, Firsov LM, Honzatko RB: Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2 Å-resolution. J Biol Chem 267: 19291–19298 (1992).

    PubMed  Google Scholar 

  3. Bork P, Doolittle RF: Proposed aquisition of an animal protein domain by bacteria. Proc Natl Acad Sci USA 89: 8990–8994 (1992).

    PubMed  Google Scholar 

  4. Baulcombe DC, Hutly AK, Martienssen RA, Barker RF, Jarvis MG: A novel wheat α-amylase gene (α-Amy3). Mol Gen Genet 209: 33–40 (1987).

    Article  Google Scholar 

  5. Belshaw NJ, Williamson G: Specificity of the binding domain of glucoamylase I. Eur J Biochem 211: 717–724 (1993).

    PubMed  Google Scholar 

  6. Boel E, Brady L, Brzozowski AM, Derewenda Z, Dodson GG, Jensen VJ, Petersen SB, Swift H, Thim L, Woldike HF: Calcium binding in α-amylases: an x-ray diffraction study at 2.1-Å resolution of two enzymes from Aspergillus. Biochemistry 29: 6244–6249 (1990).

    PubMed  Google Scholar 

  7. Buisson G, Duée E, Haser R, Payan F: Three dimensional structure of porcine pancreatic α-amylase at 2.9 Å resolution. Role of calcium in structure and activity. EMBO J 6: 3909–3916 (1987).

    PubMed  Google Scholar 

  8. Declerck N, Joyet P, Gaillardin C, Masson JM: Use of Amber suppressors to investigate the thermostability of Bacillus licheniformis α-amylase. Amino acid replacements at 6 histidine residues reveal a critical poistion at His-133. J Biol Chem 265: 15481–15488 (1990).

    PubMed  Google Scholar 

  9. Farber GK: An α/β-barrel full of evolutionary trouble. Curr Opin Struct Biol 3: 409–412 (1993).

    Google Scholar 

  10. Farber GK, Petsko GA: The evolution of α/β barrel enzymes. Trends Biochem Sci 15: 228–234 (1990).

    Article  PubMed  Google Scholar 

  11. Fujiwara S, Kakihara H, Woo KB, Lejeune A, Kanemoto M, Sakaguchi K, Imanaka T: Cyclization characteristics of cyclodextrin glucanotransferase are conferred by the NH2-terminal region of the enzyme. Appl Environ Microbiol 58: 4016–4025 (1992).

    PubMed  Google Scholar 

  12. Fujiwara S, Kakihara H, Sakaguchi K, Imanaka T: Analysis of mutations in cyclodextrin glucanotransferase from Bacillus stearothermophilus which affect cyclization characteristics and thermostability. J Bact 174: 7478–7481 (1992).

    PubMed  Google Scholar 

  13. Gibson RM, Svensson B: Identification of tryptophanyl residues involved in binding of carbohydrate ligands to barley α-amylase 2. Carlsberg Res Commun 52: 373–379 (1987).

    Google Scholar 

  14. Guan HP, Preiss J: Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiol 102: 1269–1273 (1993).

    PubMed  Google Scholar 

  15. Harris EMS, Aleshin AE, Firsov LM, Honzatko RB: Refined structure for the complex of 1-deoxynojirimycin with glucoamylase from Aspergillus awamori var. X100 to 2.4-Å resolution. Biochemistry 32: 1618–1626 (1993).

    PubMed  Google Scholar 

  16. Hermans MMP, Kroos MA, van Beumen J, Oostra BA, Reuser AJJ: Human lysosomal α-glucosidase. Characterization of the catalytic site. J Biol Chem 266: 13507–13512 (1991).

    PubMed  Google Scholar 

  17. Holm L, Koivula AK, Lehtovaara PM, Hemminki A, Knowles JKC: Random mutagenesis used to probe the structure and function of Bacillus stearothermophilus alpha-amylase. Protein Engng 3: 181–191 (1990).

    Google Scholar 

  18. Hu NT, Hung MN, Huang AM, Tsai HF, Yang BY, Chow TY, Tseng YH: Molecular cloning, characterization and nucleotide sequence of the gene for secreted α-amylase from Xanthomonas campestris pv. campestris. J Gen Microbiol 138: 1647–1655 (1992).

    PubMed  Google Scholar 

  19. Huang N, Stebbins GL, Rodriguez RL: Classification and evolution of α-amylase genes in plants. Proc Natl Acad Sci USA 89: 7526–7530 (1992).

    PubMed  Google Scholar 

  20. Huang N, Sutliff TD, Litts JC, Rodriguez RL: Classification and characterization of the rice α-amylase multigene family. Plant Mol Biol 14: 665–668 (1990).

    Article  Google Scholar 

  21. Hunziker W, Spiess M, Semenza G, Lodish HF: The sucrase-isomaltase complex: Structure, membrane-orientation, and evolution of a stalked, intrinsic brush border protein. Cell 46: 227–234 (1986).

    Article  PubMed  Google Scholar 

  22. Ishikawa K, Matsui I, Honda K, Nakatani H: Multifunctional roles of a histidine residue in human pancreatic α-amylase. Biochem Biophys Res Commun 183: 286–291 (1992).

    PubMed  Google Scholar 

  23. Ishikawa K, Matsui I, Kobayashi S, Nakatani H, Honda K: Substrate recognition at the binding site in mammalian pancreatic α-amylases. Biochemistry 32: 6259–6265 (1993).

    PubMed  Google Scholar 

  24. Itoh T, Yamashita I, Fukui S: Nucleotide sequence of the α-amylase gene (ALP1) in the yeast Saccharomycopsis fibuligera. FEBS Lett 219: 339–342 (1987).

    Article  PubMed  Google Scholar 

  25. Janacek S: New conserved amino acid region of α-amylases in the third loop of their (β/α)8-barrel domains. Biochem J 288: 1069–1070 (1992).

    PubMed  Google Scholar 

  26. Jespersen HM, MacGregor EA, Henrissat B, Sierks MR, Svensson B: Starch- and glycogen-debranching and branching enzymes. Prediction of structural features of the catalytic (β/α)8-barrel domain and evolutionary relationship to other amylolytic enzymes. J Prot Chem, in press.

  27. Jespersen HM, MacGregor EA, Sierks MR, Svensson B: Comparison of the domain-level organization of starch hydrolases and related enzymes. Biochem J 280: 51–55 (1991).

    PubMed  Google Scholar 

  28. Joyet P, Declerck N, Gaillardin C: Hyperthermostable variants of a highly thermostable alpha-amylase. Biol/technology 10: 1579–1583 (1992).

    Article  Google Scholar 

  29. Juge N, Søgaard M, Chaix JC, Martin-Eauclaire MF, Svensson B, Marchis-Mouren G, Guo XJ: Comparison of barley malt α-amylase isozymes 1 and 2: construction of cDNA hybrids by in vivo recombination and their expression in yeast. Gene 130: 159–166 (1993).

    PubMed  Google Scholar 

  30. Kadziola A, Søgaard M, Svensson B, Haser R:: Structure of an α-amylase/inhibitor complex and implications for starch binding and catalysis. Proc Natl Acad Sci USA, submitted.

  31. Kizaki H, Hata Y, Watanabe K, Katsube K, Suzuki Y: Polypeptide folding of Bacillus cereus ATCC7064 oligo-1,6-glucosidase revealed by 3.0 Å resolution x-ray analysis. J Biochem (Tokyo) 113: 646–649 (1993).

    Google Scholar 

  32. Klein C, Hollender J, Bender H, Schulz GE: Catalytic center of cyclodextrin glycosyltransferase derived from x-ray structure analysis combined with site-directed mutagenesis. Biochemistry 31: 8740–8746 (1992).

    PubMed  Google Scholar 

  33. Klein C, Schulz GE: Structure of cyclodextrin glycosyltransferase refined at 2.0 Å resolution. J Mol Biol 217: 737–750 (1990).

    Google Scholar 

  34. Koizuka N, Tanaka Y, Morohashi Y: Isolation of a cDNA clone for α-amylase in mung bean cotyledons. Plant Physiol 94: 1488–1491 (1990).

    Google Scholar 

  35. Konishi H, Sato T, Yamagata H, Udaka S: Efficient production of human alpha-amylase by a Bacillus brevis mutant. Appl Microbiol Biotechnol 34: 297–302 (1990).

    PubMed  Google Scholar 

  36. Kubota M, Matsuura, Sakai S, Katsube Y: Molecular structure of B. sterarothermophilus cyclodextrin glucanotransferase and analysis of substrate binding site. Denpun Kagaku 38: 141–146 (1991).

    Google Scholar 

  37. Kuriki T, Takata H, Okada S, Imanaka T: Analysis of the active center of Bacillus stearothermophilus neopullulanase. J Bact 173: 6147–6152 (1991).

    PubMed  Google Scholar 

  38. Kuriki T, Yanase M, Takata H, Imanaka T, Okada S: Highly branched oligosaccharides produced by the transglycosylation reaction of neopullulanase. J Ferment Bioeng 76: 184–190 (1993).

    Google Scholar 

  39. Lacks SA, Dunn JJ, Greenberg B: Identification of base mismatches recognized by the heteroduplex-DNA-repair system of Streptococcus pneumoniae. Cell 31: 327–336 (1982).

    PubMed  Google Scholar 

  40. MacGregor EA: α-amylase structure and activity. J Prot Chem 7: 399–415 (1988).

    Google Scholar 

  41. MacGregor EA: Relationships between structure and activity in the α-amylase family of starch-metabolising enzymes. Starch 45: 232–237 (1993).

    Google Scholar 

  42. MacGregor AW, Morgan JE, MacGregor EA: The action of germinated barley α-amylases on linear maltodextrins. Carbohydr Res 227: 301–313 (1992).

    Google Scholar 

  43. MacGregor EA, Svensson B: A super-secondary structure predicted to be common to several α-1,4-d-glucan-cleaving enzymes. Biochem J 259: 145–152 (1989).

    PubMed  Google Scholar 

  44. Mathupala SP, Lowe SE, Podkovyrov SM, Zeikus JG: Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis. J Biol Chem 268: 16332–16344 (1993).

    PubMed  Google Scholar 

  45. Matsui I, Ishikawa K, Miyari S, Fukui S, Honda K: An increase in the transglycosylation activity of Saccharomycopsis α-amylase altered by site-directed mutagenesis. Biochim Biophys Acta 1077: 416–419 (1991).

    PubMed  Google Scholar 

  46. Matsui I, Ishikawa K, Miyari S, Fukui S, Honda K: Alteration of bond-cleavage pattern in the hydrolysis catalyzed by Saccharomycopsis α-amylase altered by sitedirected mutagenesis. Biochemistry 31: 5232–5236 (1992).

    PubMed  Google Scholar 

  47. Matsui I, Ishikawa K, Miyari S, Fukui S, Honda K: A mutant α-amylase with enhanced activity specific for short substrates. FEBS Lett 310: 216–218 (1992).

    PubMed  Google Scholar 

  48. Matsui I, Yoneda S, Ishikawa K, Miyari S, Fukui S, Umeyama H, Honda K: Roles of the aromatic residues conserved in the active center of Saccharomycopsis α-amylase for transglycosylation and hydrolysis activities. Biochemistry, in press.

  49. Matsuura Y, Kusunoki M, Harada W, Kakudo M: Structure and possible catalytic residues of Taka amylase. J Biochem (Tokyo) 95: 695–702 (1984).

    Google Scholar 

  50. Mikami B, Hehre ED, Sato M, Katsube Y, Hirose M, Morita Y, Sacchettini JC: The 2.0-Å resolution structure of soybean β-amylase complexed with α-cyclodextrin. Biochemistry 32: 6836–6845 (1993).

    PubMed  Google Scholar 

  51. Mizuno K, Kawasaki T, Shimada H, Satoh H, Kobayashi E, Okumura S, Aral Y, Baba T: Alteration of the structural properties of starch components by the lack of an isoform of starch branching isozyme in rice seeds. J Biol Chem 268: 19084–19091 (1993).

    PubMed  Google Scholar 

  52. Mizuno K, Kimura K, Arai Y, Kawasaki T, Shimada H, Baba T: Starch branching enzymes from immature rice seeds. J Biochem (Tokyo) 112: 643–651 (1992).

    Google Scholar 

  53. Nagashima T, Toda S, Kitamoto K, Gomi K, Kumagai C, Toda H: Site-directed mutagenesis of the catalytic active-site residues of Taka-amylase A. Biosci Biotech Biochem 56: 207–210 (1992).

    Google Scholar 

  54. Naim HY, Niermann T, Kleinhaus U, Hollenberg CP, Strasser AWM: Striking structural and functional similarities suggest that intestinal sucrase-isomaltase, human lysosomal α-glucosidase and Schwanniomyces occidentalis glucoamylase are derived from a common ancestral gene. FEBS Lett 294: 109–112 (1991).

    Article  PubMed  Google Scholar 

  55. Nakamura A, Haga K, Ogawa S, Kuwano K, Kimura K, Yamane K: Functional relationships between cyclodextrin glucanotransferase from an alkalophilic Bacillus and α-amylases. Site-directed mutagenesis of the conserved two Asp and one Glu residues. FEBS Lett 296: 37–40 (1992).

    Article  PubMed  Google Scholar 

  56. Nakamura A, Haga K, Yamane K: Three histidine residues in the active center of cyclodextrin glucanotransferase from alkalophilic Bacillus sp. 1011: effects of the replacement on pH dependence and transition-state stabilization. Biochemistry 32: 6624–6631 (1993).

    PubMed  Google Scholar 

  57. Oguma T, Matsuyama A, Kikuchi M, Nakano E: Cloning and sequence analysis of the cyclomaltodextrinase gene from Bacillus sphaericus and expression in Escherichia coli cells. Appl Microbiol Biotechnol 39: 197–203 (1993).

    Article  PubMed  Google Scholar 

  58. Pen J, Molendijk L, Quax WJ, Sijmons PC, van Ooyen AJJ, van den Elzen PJM, Rietveld K, Hoekema A: Production of active Bacillus licheniformis alpha-amylase in tobacco and its application in starch liquefaction. Bio/technology 10: 2293–296 (1992).

    Article  Google Scholar 

  59. Pen J, van Ooyen AJJ, van den Elzen PJM, Rietveld K, Hoekema A: Direct screening for high-level expression of an induced α-amylase gene in plants. Plant Mol Biol 18: 1133–1139 (1992).

    PubMed  Google Scholar 

  60. Podkovyrov SM, Burdette D, Zeikus JG: Analysis of the catalytic center of cyclomaltodextrinase from Thermoanaerobacter ethanolicus 39E. FEBS Lett 317: 259–262 (1993).

    Article  PubMed  Google Scholar 

  61. Podkovyrov SM, Zeikus JG: Structure of the gene encoding cyclomaltodextrinase from Clostridium thermohydrosulfuricum 39E and characterization of the enzyme purified from Escherichia coli. J Bact 174: 5400–5405 (1992).

    PubMed  Google Scholar 

  62. Poulsen P, Kreiberg JD: Starch branching enzyme cDNA from Solanum tuberosum. Plant Physiol 102: 1053–1054 (1993).

    Article  PubMed  Google Scholar 

  63. Qian M, Haser R, Payan F: Structure and molecular model refinement of pig pancreatic α-amylase at 2.1 Å resolution. J Mol Biol 231: 785–799 (1993).

    Article  PubMed  Google Scholar 

  64. Rademacher TW, Parekh RB, Dwek RA: Glycobiology. Annu Rev Biochem 57: 785–838 (1988).

    Article  PubMed  Google Scholar 

  65. Rodenburg KW, Juge N, Guo XJ, Søgaard M, Chaix JC, Svensson B: Domain B protruding at the third β-strand of the α/β-barrel in barley α-amylase confers distinct isozyme-specific properties. Eur J Biochem, accepted for publication.

  66. Schneider E, Freundlieb S, Tapio S, Boos W: Molecular characterization of the MalT-dependent periplasmic α-amylase of Escherichia coli encoded by malS. J Biol Chem 267: 5148–5154 (1992).

    PubMed  Google Scholar 

  67. Shewmaker CK, Stalker DM: Modifying starch biosynthesis with transgenes in potatoes. Plant Physiol 100: 1083–1086 (1992).

    Google Scholar 

  68. Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM: Regulation of the amount of starch in plant tissues by ADP glucose pyruphosphorylase. Science 258: 287–292 (1992).

    Google Scholar 

  69. Suzuki Y, Ito N, Yuuku T, Yamagata H, Udaka S: Amino acid stabilizing a Bacillus α-amylase against irreversible thermoinactivation. J Biol Chem 264: 18933–18938 (1989).

    PubMed  Google Scholar 

  70. Svensson B: Regional distant sequence homology between amylases, α-glucosidases and transglucanosylases. FEBS Lett 230: 72–76 (1988).

    Article  PubMed  Google Scholar 

  71. Svensson B, Jespersen HM, Sierks MR, MacGregor EA: Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J 264: 309–311 (1989).

    PubMed  Google Scholar 

  72. Svensson B, Larsen K, Svendsen I, Boel E: The complete amino acid sequence of the glycoprotein, glucoamylase G1 from Aspergilus niger. Carlsberg Res Commun 48: 529–543 (1983).

    Google Scholar 

  73. Svensson B, Søgaard M: Protein engineering of amylases. Biochem Soc Trans 20: 34–42 (1992).

    PubMed  Google Scholar 

  74. Svensson B, Søgaard M: Mutational analysis of glycosylase function. J Biotechnol 29: 1–37 (1993).

    Article  Google Scholar 

  75. Søgaard M, Andersen JS, Roepstorff P, Svensson B: Electrospray mass spectrometry characterization of post-translational modifications of barley α-amylase 1 produced in yeast. Bio/technology 11: 1162–1165 (1993).

    PubMed  Google Scholar 

  76. Søgaard M, Kadziola A, Haser R, Svensson B: Sitedirected mutagenesis of histidine 93, aspartic acid 180, glutamic acid 205, histidine 290, and aspartic acid 291 at the active site and tryptophan 279 at the raw starch binding site in barley amylase 1. J Biol Chem 268: 22480–22484 (1993).

    PubMed  Google Scholar 

  77. Takaha T, Yanase M, Okada S, Smith SM: Disproportionating enzyme (4-α-glucanotransferase; EC 2.4.1.25) of potato. J Biol Chem 268: 1391–1396 (1993).

    PubMed  Google Scholar 

  78. Takase K: Interaction of catalytic-site mutants of Bacillus subtilis α-amylase with substrates and acarbose. Biochim Biophys Acta 1122: 278–282 (1992).

    PubMed  Google Scholar 

  79. Takase K: Effect of mutation of an amino acid residue near the catalytic site on the activity of Bacillus stearothermophilus α-amylase. Eur J Biochem 211: 899–902 (1993).

    PubMed  Google Scholar 

  80. Takase K, Matsumoto T, Mizuno H, Yamane K: Sitedirected mutagenesis of active site residues in Bacillus subtilis α-amylase. Biochim Biophys Acta 1120: 281–288 (1992).

    PubMed  Google Scholar 

  81. Takata H, Kuriki T, Okada S, Takesada Y, Iizuka M, Minamiura N, Imanaka T: Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at α-(1→4)- and α-(1→6)-glucosidic linkages. J Biol Chem 267: 18447–18452 (1992).

    PubMed  Google Scholar 

  82. Tao BY, Reilly PJ, Robyt JF: Detection of a covalent intermediate in the mechanism of action of porcine pancreatic α-amylase by using 13C nuclear magnetic resonance. Biochim Biophys Acta 995: 214–220 (1989).

    PubMed  Google Scholar 

  83. Tomasic SJ, Klibanov AM: Mechanisms of irreversible thermal inactivation of Bacillus α-amylases. J Biol Chem 263: 3086–3091 (1988).

    PubMed  Google Scholar 

  84. Tomasic SJ, Klibanov AM: Why is one Bacillus α-amylase more resistant against irreversible thermoinactivation than another. J Biol Chem 263: 3092–3096 (1988).

    PubMed  Google Scholar 

  85. Tonozuka T, Ohtsuka M, Mogi S, Sakai H, Ohta T, Sakano Y: A neopullulanase-type α-amylase gene from Thermoactinomyces vulgaris R-47. Biosci Biotech Biochem 57: 395–401 (1993).

    Google Scholar 

  86. Tsukamoto A, Kimura K, Ishii Y, Takano T, Yamane Y: Nucleotide sequence of the maltohexaose-producing amylase gene from an alkalophilic Bacillus sp. # 707 and structural similarity to liquefying type α-amylases. Biochem Biophys Res Commun 151: 25–31 (1988).

    PubMed  Google Scholar 

  87. Vihinen M, Ollikka P, Niskanen J, Meyer P, Suominen I, Karp M, Holm L, Knowles J, Mäntsälä P: Site-directed mutagenesis of a thermostable α-amylase from Bacillus stearothermophilus: putative role of three conserved residues. J Biochem (Tokyo) 107: 267–272 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, B. Protein engineering in the α-amylase family: catalytic mechanism, substrate specificity, and stability. Plant Mol Biol 25, 141–157 (1994). https://doi.org/10.1007/BF00023233

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00023233

Keywords

Navigation