Skip to main content
Log in

A reverse KREBS cycle in photosynthesis: consensus at last

  • Minireview
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Allison M.J. and Peel J.L. (1971) The biosynthesis of valine from isobutyrate by Peptostreptococcus elsdenii and Bacteroides ruminicola. Biochem. J. 121, 431–437

    PubMed  Google Scholar 

  • Allison M.J. and Robinson I.M. (1967) Biosynthesis of phenylalanine from phenylacetate by Chromatium and Rhodospirillum rubrum. J. Bacteriol. 93, 1269–1275

    PubMed  Google Scholar 

  • Antranikian G., Herzberg C. and Gottschalk G. (1982) Characterization of citrate lyase from Chlorobium limicola. J. Bacteriol. 152, 1284–1287

    PubMed  Google Scholar 

  • Arnon D.I. (1988) The discovery of ferredoxin: the photosynthetic path. Trends Biochem. Sci. 13, 30–33; correction, 143

    Article  PubMed  Google Scholar 

  • Arnon D.I., Losada M., Nozaki M. and Tagawa K. (1961) Photoproduction of hydrogen, photofixation of nitrogen and a unified concept of photosynthesis. Nature 190, 601–606

    PubMed  Google Scholar 

  • Bachofen R., Buchanan B.B. and Arnon D.I. (1964) Ferredoxin as a reductant in pyruvate synthesis by a bacterial extract. Proc. Natl. Acad. Sci. USA 51, 690–694

    PubMed  Google Scholar 

  • Beuscher N. and Gottschalk G. (1972) Lack of citrate lyase — the key enzyme of the reductive carboxylic acid cycle in Chlorobium thiosulfatophilum and Rhodospirilum rubrum. Z. Naturforsch 27b, 967–973

    Google Scholar 

  • Bondar V.A., Gogotova G.I. and Ziakum A.M. (1976) Fractionation of carbon isotopes by photoautotrophic microorganisms having different pathways of carbon dioxide assimilation. Dokl. Akad. Nauk SSSR (Biological Sciences) 228, 720–722 (English translation, pp. 223–225)

    Google Scholar 

  • Bothe H., Falkenberg B. and Molteernsting U. (1974) Properties and function of the pyruvate: ferredoxin oxidoreductase from the blue-green alga Anabaena cylindrica. Arch. Mikrobiol. 96, 291–304.

    PubMed  Google Scholar 

  • Broda, E. (1975) The Evolution of Bioenergetic Processes, Pergamon Press

  • Buchanan B.B. (1969) Role of ferredoxin in the synthesis of α-ketobutyrate from propionyl coenzyme A and carbon dioxide by enzymes from photosynthetic and nonphotosynthetic bacteria. J. Biol. Chem. 244, 4218–4223

    PubMed  Google Scholar 

  • Buchanan B.B. (1974) Orthophosphate requirement for the formation of phosphoenolpyruvate from pyruvate by enzyme preparations from photosynthetic bacteria. J. Bacteriol. 199, 1066–1068

    Google Scholar 

  • Buchanan B.B. and Arnon D.I. (1970) Ferredoxins: Chemistry and function in photosynthesis, nitrogen fixation and fermentative metabolism. Adv. Enzymol. 33, 119–176

    PubMed  Google Scholar 

  • Buchanan B.B., Bachofen R. and Arnon D.I. (1964) Role of ferredoxin in the reductive assimilation of CO2 and acetate by extracts of the photosynthetic bacterium, Chromatium. Proc. Natl. Acad. Sci. USA 52, 839–847

    PubMed  Google Scholar 

  • Buchanan B.B. and Evans M.C.W. (1965) The synthesis of α-ketoglutarate from succinate and carbon dioxide by a subcellular preparation of a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 54, 1212–1218

    PubMed  Google Scholar 

  • Buchanan B.B., Evans M.C.W. and Arnon D.I. (1967) Ferredoxin-dependent carbon assimilation in Rhodospirillum rubrum. Arch. Microbiol. 59, 32–40

    Google Scholar 

  • Buchanan B.B., Matsubara H. and Evans M.C.W. (1969) Ferredoxin from the photosynthetic bacterium, Chlorobium thiosulfatophilum. A link to ferredoxins from nonphotosynthetic bacteria. Biochim. Biophys. Acta 189, 46–53

    PubMed  Google Scholar 

  • Buchanan B.B., Schurmann P. and Shanmugam K.T. (1972) Role of reductive carboxylic acid cycle in a photosynthetic bacterium lacking ribulose-1,5 diphosphate carboxylase. Biochim. Biophys. Acta 283, 136–145

    PubMed  Google Scholar 

  • Buchanan B.B. and Sirevåg R. (1976) Ribulose 1,5-bisphosphate and Chlorobium thiosulfatophilum. Arch. Microbiol. 109, 15–19

    PubMed  Google Scholar 

  • Bush R.S. and Sauer F.D. (1976) Enzymes of 2-Oxo acid degradation and biosynthesis in cell-free extracts of mixed rumen micro-organisms. Biochem. J. 157, 325–331

    PubMed  Google Scholar 

  • Calvin M. (1962) The path of carbon in photosynthesis. Science 135, 879–889

    PubMed  Google Scholar 

  • Cherniadjev I.I., Kondratieva E.N., and Doman N.G. (1974) The activity of ribulose diphosphate- and phosphopyruvate carboxylases in phototrophic bacteria. Mikrobiologiya 43, 949–954.

    Google Scholar 

  • Evans M.C.W. and Buchanan B.B. (1965) Photoreduction of ferredoxin and its use in carbon dioxide fixation by a subcellular system from a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 53, 1420–1425

    PubMed  Google Scholar 

  • Evans M.C.W., Buchanan B.B. and Arnon D.I. (1966) A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. Natl. Acad. Sci. USA 55, 928–934

    PubMed  Google Scholar 

  • Fuchs, G. and Stupperich, E. (1985) Evolution of autotrophic CO2 fixation. In Evolution of Prokaryotes, eds. Schleifer, K.H. and Stackebrandt, E., pp. 235–251, Academic Press

  • Fuchs G.E., Stupperich and G. Eden (1980) Autotrophic CO2 fixation in Chlorobium limicola. Evidence for the operation of the reductive tricarboxylic acid cycle in growing cells. Arch. Microbiol. 128, 64–71

    Google Scholar 

  • Fuchs G.E., Stupperich E. and Jaenchen R. (1980b) Autotrophic CO2 fixation in Chlorobium limicola. Evidence against the operation of the Calvin cycle in growing cells. Arch. Microbiol. 128, 56–63

    Google Scholar 

  • Fuller, R.C. (1978) Photosynthetic carbon metabolism in the green and purple bacteria. In Photosynthetic Bacteria (R.K. Clayton and W.R. Sistrom, eds.), pp. 691–705, Plenum Press

  • Gehring U. and Arnon D.I. (1971) Ferredoxin-dependent phenylpyruvate synthesis by cell-free preparations of photosynthetic bacteria. J. Biol. Chem. 246, 4518–4522

    PubMed  Google Scholar 

  • Gehring Y. and Arnon D.I. (1972) Purification and properties of α-ketoglutarate synthase from a photosynthetic bacterium. J. Biol. Chem. 247, 6963–6969

    PubMed  Google Scholar 

  • Gest H. (1987) Evolutionary roots of the citric acid cycle in prokaryotes. In Krebs Citric Acid Cycle—Half a Century and Still Running, eds. Kay J. and Weitzman P.D.J., pp. 3–16, University Press, Cambridge

    Google Scholar 

  • Gottschalk, G. (1985) Bacterial Metabolism (2nd edition) Springer-Verlag

  • Ivanovsky R.N., Sintsov N.V. and Kondratieva E.M. (1980) ATP-linked citrate lyase activity in the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum. Arch. Microbiol. 128, 239–241

    Article  Google Scholar 

  • Jungermann K., Kirchniway H. and Thauer R.K. (1970) Ferredoxin dependent CO2 reduction to formate in Clostridium pasteuranium. Biochem. Biophys. Res. Commun. 41, 682–689

    PubMed  Google Scholar 

  • Krebs, H. (1981) The evolution of metabolic pathways. In Molecular and Cellular Aspects of Microbiol Evolution, (Carlisle, M.J., Collins, J.F. and Moseley, B.E.B. eds.) pp. 215–228 Cambridge University Press

  • McFadden B.A. (1973) Autotrophic CO2 assimilation and the evolution of ribulose 1,5-diphosphate carboxylase. Bacteriol. Rev. 37, 289–319

    PubMed  Google Scholar 

  • McFadden, B.A. (1978) Assimilation of one-carbon compounds. In The Bacteria, v. VI (Gunsalus, J.C. ed.), pp. 219–304, Academic Press

  • Mortenson L.E., Valentine R.C. and Carnahan J.E. (1962) An electron transport factor from Clostridium pasteurianum. Biochem. Biophys. Res. Commun. 7, 448–452

    PubMed  Google Scholar 

  • Mortlock R.R. and Wolfe R.S. (1959) Reversal of pyruvate oxidation in Clostridium butyrium. J. Biol. Chem. 234, 1657–1658

    PubMed  Google Scholar 

  • Ormerod, J.G. and Sirevåg, R. (1983) Essential aspects of carbon metabolism. In The Phototrophic Bacteria (Ormerod, J.G., ed.), pp. 100–119, Blackwell Scientific Publications

  • Preuss A., Schauder R., Fuchs G. and Stichler W. (1989) Carbon isotope fractionation by autotrophic bacteria with three different CO2 fixation pathways. Z. Naturforsch. 44c, 397–402

    Google Scholar 

  • Quandt L., Gottschalk G., Ziegler H. and Stichler W. (1977) Isotope discrimination by photosynthetic bacteria. FEMS Microbiol. Lett. 1, 125–128

    Article  Google Scholar 

  • Quandt L., Pfennig N. and Gottschalk G. (1978) Evidence for the key position of pyruvate synthase in the assimilation of CO2 or photosynthetic carbon metabolism by Chlorobium. FEMS Microbiol. Lett. 3, 227–230

    Article  Google Scholar 

  • Quayle J.R. and Ferenci T. (1978) Evolutionary aspects of autotrophy. Microbiol. Rev. 42, 251–273

    PubMed  Google Scholar 

  • Schauder R., Widdel F. and Fuchs G. (1987) Carbon assimilation in sulfate reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch. Microbiol. 148, 218–225

    Google Scholar 

  • Shiveley J.M., Devore W., Stratford L., Porter L., Medlin L. and Stevens S.E.Jr. (1986) Molecular evolution of the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisco). FEMS Microbiol. Lett. 37, 251–257

    Article  Google Scholar 

  • Strevåg R. (1974) Further studies on carbon dioxide fixation in Chlorobium. Archiv. Microbiol. 93, 3–18

    Google Scholar 

  • Sirevåg R., Buchanan B.B., Berry J.A. and Troughton J.H. (1977) Mechanisms of CO2 fixation in bacterial photosynthesis studied by the carbon isotope fractionation technique. Arch. Microbiol. 112, 35–38

    PubMed  Google Scholar 

  • Sirevåg R. and Ormerod J.G. (1970a) Carbon-dioxide fixation in photosynthetic green sulfur bacteria. Science 169, 186–188

    PubMed  Google Scholar 

  • Sirevåg R. and Ormerod J.G. (1970b) Carbon dioxide fixation in green sulfur bacteria. Biochem. J. 120, 399–408

    PubMed  Google Scholar 

  • Smillie R.M., Rigopoulos N. and Kelly H. (1962) Enzymes of the reductive pentose phosphate cycle in the purple and in the green photosynthetic bacteria. Biochim. Biophys. Acta 56, 612–614

    Article  PubMed  Google Scholar 

  • Tabita F.R. (1988) Molecular and cellular regulation of autotrophic carbon dioxide fixation in microorganisms. Microbiol. Rev. 52, 155–189

    PubMed  Google Scholar 

  • Tabita R.F., McFadden B.A. and Pfennig N. (1974) D-Ribulose 1,5-bisphosphate carboxylase in Chlorobium thiosulfatophilum Tassajara. Biochim. Biophys. Acta 341, 187–194

    PubMed  Google Scholar 

  • Tagawa K. and Arnon D.I. (1962) Ferredoxins as electron carriers in photosynthesis and in the biological production and consumption of hydrogen gas. Nature 195, 537–543

    PubMed  Google Scholar 

  • Takabe T. and Akazawa T. (1977) A comparative study of the effect of O2 on photosynthetic carbon metabolism by Chlorobium thiosulfatophilum and Chromatium vinosum. Plant and Cell Physiol. 18, 753–765

    Google Scholar 

  • Thauer R.K. (1988) Citric acid cycle, 50 years on. Modification and an alternate pathway in anaerobic bacteria. Eur. J. Biochem. 176, 497–508

    PubMed  Google Scholar 

  • Uyeda K. and Rabinowitz J.C. (1971) Pyruvate-ferredoxin oxidoreductase III. Purification and properties of the enzyme. J. Biol. Chem. 246, 3111–3119

    PubMed  Google Scholar 

  • Weitzman, P.D.J. (1985) Evolution in the citric acid cycle. In Evolution of Prokaryotes, eds, Schleiffer, K.H. and Stackebrandt, E., pp. 253–275.

  • Wood H.G., Ragsdale S.W. and Pezacka E. (1986) The acetyl-CoA pathway: a newly disovered pathway of autotrophic growth. Trends Biochem. Sci. 11, 14–17.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buchanan, B.B., Arnon, D.I. A reverse KREBS cycle in photosynthesis: consensus at last. Photosynth Res 24, 47–53 (1990). https://doi.org/10.1007/BF00032643

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00032643

Key words

Navigation