Skip to main content
Log in

Characterization of a family of genes encoding a fruit-specific wound-stimulated protein of bell pepper (Capsicum annuum): identification of a new family of transposable elements

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Using a fruit-specific cDNA as a probe we isolated and sequenced the two corresponding homologous genes (Sn-1 and Sn-2) of the bell pepper (Capsicum annuum) genome. Both genes have a single intron and numerous unusual long inverted repeat sequences. The introns share 87% homology and Sn-2 contains one 450 bp additional sequence with structural features of a transposable element, which is highly repetitive in the bell pepper genome. Surprisingly, analysis in data banks showed that genes encoding the potato starch phosphorylase (EC 2.4.1.1) and patatin contain a similar element, named Alien, in their 5′-upstream region. Alien elements are characterized by a conserved 28 bp terminal inverted repeat (TIR), small size, high AT content, potential to form stable DNA secondary structures and they have probably been inserted in TA target sites. Interestingly, the TIR of the Alien elements shares high homology with sequences existing in the TIR of extrachromosomal linear pSKL DNA plasmid of Saccharomyces kluyveri. Northern blot analyses detected Sn-1 transcripts principally in the red fruit whereas no Sn-2 transcripts were detected in neither of the samples monitored. Western blot analyses detected a 16.8 kDa Sn protein principally in the ripe red fruit and wounded areas of green unripe fruit. A comparison of the deduced amino acid sequence of Sn-1 with protein sequences in data banks revealed a significant homology with proteins likely involved in the plant's disease resistance response. Analyses at the subcellular level showed that Sn-1 is localized in the membrane of vacuoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bogorad L, Gubbins EJ, Krebbers E, Larrinua IM, Mulligan BJ, Muskavitch KMT, Orr EA, Rodermel SR, Schantz R, Steinmetz AA, DeVos G, Ye YK: Cloning and physical mapping of maize plastid genes. Meth Enzymol 97: 524–554 (1983).

    Google Scholar 

  2. Boller T: Ethylene in pathogenesis and disease resistance. In: Mattoo AK, Suttle JC (eds) The Plant Hormone Ethylene, pp. 293–314. CRC Press, Boca Raton, FL (1991).

    Google Scholar 

  3. Breathnach R, Chambon P: Organization and expression of eukaryotic split genes coding for proteins. Annu Rev Biochem 50: 349–383 (1981).

    PubMed  Google Scholar 

  4. Breiteneder H, Ferreira F, Hoffmann-Sommergruber K, Ebner C, Breitenbach M, Rumpold H, Kraft D, Scheiner O: Four recombinant isoforms of Cor a I, the major allergen of hazel pollen, show different IgE-binding properties. Eur J Biochem 212: 355–362 (1993).

    PubMed  Google Scholar 

  5. Breiteneder H, Pettenburger K, Bito A, Valenta R, Kraft D, Rumpold H, Scheiner O, Breitenach M: The gene coding for the major birch pollen allergen Betvl, is highly homologous to a pea disease resistance response gene. EMBO J 8: 1935–1938 (1989).

    PubMed  Google Scholar 

  6. Bureau TE, Wessler SR: Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell 4: 1283–1294 (1992).

    Article  PubMed  Google Scholar 

  7. Bureau TE, Wessler SR: Stowaway: a new family of inverted repeat elements associated with the genes of both monocotyledonous and dicotyledonous plants. Plant Cell 6: 907–916 (1994).

    Article  PubMed  Google Scholar 

  8. Camara B, Bousquet J, Cheniclet C, Carde JP, Kuntz M, Evrard JL, Weil JH: Enzymology of isoprenoid biosynthesis and expression of plastid and nuclear genes during chromoplast differentiation in pepper fruits (Capsicum annuum). In: Boyer CD, Shannon JC, Hardison RC (eds) Biochemistry and Genetics of Nongreen Plastids, pp. 141–156. American Society for Plant Physiology (1989).

  9. Camirand A, St-Pierre B, Marineau C, Brisson N: Occurrence of a copia-like transposable element in one of the introns of the potato starch phosphorylase gene. Mol Gen Genet 224: 33–39 (1990).

    PubMed  Google Scholar 

  10. Cordes S, Deikman J, Margossian LJ, Fischer RL: Interaction of a developmentally regulated DNA-binding factor with sites flanking two different fruit-ripening genes from tomato. Plant Cell 1: 1025–1034 (1989).

    Article  PubMed  Google Scholar 

  11. Draper J, Scott R: The isolation of plant nucleic acids. In: Armitage P, Walden R (eds) Plant Genetic Transformation and Gene Expression: A Laboratory Manual, pp. 201–236. Blackwell Scientific Publications, Oxford (1988).

    Google Scholar 

  12. Elsayed S, Apold J, Holen H, Vik H, Florvaag E, Dybendal T: The structural requirements of epitopes with IgE binding capacity demonstrated by three major allergens from fish, egg and tree pollen. Scand J Clin Lab Invest Suppl 204: 17–31 (1991).

    PubMed  Google Scholar 

  13. Feinberg AP, Vogelstein B: A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 137: 266–267 (1983).

    Google Scholar 

  14. Gasser CS, Budelier KA, Smith AG, Shah DM, Fraley RT: Isolation of tissue-specific cDNAs from tomato pistils. Plant Cell 1: 15–24 (1989).

    Article  PubMed  Google Scholar 

  15. Gillaspy G, Ben-David H, Gruissem W: Fruits: a developmental perspective. Plant Cell 5: 1439–1451 (1993).

    PubMed  Google Scholar 

  16. Goodall GJ, Filipowicz W: The AU-rich sequences present in the introns of plant nuclear pre-mRNAs are required for splicing. Cell 58: 473–483 (1989).

    Article  PubMed  Google Scholar 

  17. Griffing LR, Nessler CL: Immunolocalization of the major latex proteins in developing laticifers of opium poppy (Papaver somniferum). J Plant Physiol 134: 357–363 (1989).

    Google Scholar 

  18. Gualberto JM, Wintz H, Weil JH, Grienenberger JM: The genes coding for subunit 3 of NADH dehydrogenase and for ribosomal protein S12 are present in the wheat and maize mitochondrial genomes and are cotranscribed. Mol Gen Genet 215: 118–127 (1988).

    Article  PubMed  Google Scholar 

  19. Guan KL, Dixon JE: Eukaryotic proteins expressed in Escherichia coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal Biochem 192: 262–267 (1991).

    PubMed  Google Scholar 

  20. Heidecker G, Messing J: Structural analysis of plant genes. Annu Rev Plant Physiol 37: 439–466 (1986).

    Google Scholar 

  21. Hishinuma F, Hirai K: Genome organization of the linear plasmid, pSKL, isolated from Saccharomyces kluyveri. Mol Gen Genet 226: 97–106 (1991).

    Article  PubMed  Google Scholar 

  22. Joshi CP: Putative polyadenylation signals in nuclear genes of higher plants: a compilation and analysis. Nucl Acids Res 15: 9627–9640 (1987).

    PubMed  Google Scholar 

  23. Kaiser K, Murray NE: The use of phage lambda replacement vectors in the construction of representative genomic DNA libraries. In: Glover DM (eds) DNA Cloning: A Practical Approach, pp. 1–47. IRL Press, Oxford/Washington DC (1985).

    Google Scholar 

  24. Kozak M: Compilation and analysis of sequences upstream from the translation start site in eukaryotic mRNAs. Nucl Acids Res 12: 857–872 (1984).

    PubMed  Google Scholar 

  25. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132 (1982).

    PubMed  Google Scholar 

  26. Larsen JN, Stroman P, Ipsen H: PCR based cloning and sequencing of isogenes encoding the tree pollen major allergen Car b I from Carpinus betulus, hornbeam. Mol Immunol 29: 703–711 (1992).

    Article  PubMed  Google Scholar 

  27. Locht U, Meier I, Halbrock K, Sommsich IE: A 125 bp promoter fragment is sufficient for strong elicitor-mediated gene activation in parsley. EMBO J 9: 2945–2950 (1990).

    PubMed  Google Scholar 

  28. Lürssen K: Ethylene and Agriculture. In: Mattoo AK, Suttle JC (eds) The Plant Hormone Ethylene, pp. 315–326. CRC Press, Boca Raton, FL (1991).

    Google Scholar 

  29. Matton DP, Brisson N: Cloning, expression and sequence conservation of pathogenesis-related gene transcripts of potato. Mol Plant-Microbe Inter 2: 325–331 (1989).

    PubMed  Google Scholar 

  30. Mikal E, Saltveit J: Carbon dioxide, ethylene and color development in ripening mature green bell peppers. J Am Soc Hort Sci 102: 523–525 (1977).

    Google Scholar 

  31. Monroy AF, Schwartzbach SD: Photocontrol of the polypeptide composition of Euglena. Planta 138: 249–258 (1983).

    Google Scholar 

  32. Montgomery J, Goldman S, Deikman J, Margossian LJ, Fischer R: Identification of an ethylene-responsive region in the promoter of a fruit ripening gene. Proc Natl Acad Sci USA 90: 5939–5943 (1993).

    PubMed  Google Scholar 

  33. Neale AD, Wahleithner JA, Lund M, Bonnett HT, Kelly A, Ry Meeks-Wagner D, Peacock WJ, Dennis ES: Chitinase, β-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 2: 673–684 (1990).

    Article  PubMed  Google Scholar 

  34. Nessler CL, Burnett RJ: Organization of the major latex protein gene family in opium poppy. Plant Mol Biol 20: 749–752 (1992).

    PubMed  Google Scholar 

  35. Nessler CL, Kurz WGW, Pelcher LE: Isolation and analysis of the major latex protein genes of opium poppy. Plant Mol Biol 15: 951–953 (1990).

    PubMed  Google Scholar 

  36. Oeller PW, Min-Wong L, Taylor LP, Pike DA, Theologis A: Reversible inhibition of tomato fruit senescence by antisense RNA. Science 254: 437–439 (1991).

    PubMed  Google Scholar 

  37. Saunders SE, Burke JF: Rapid isolation of miniprep DNA for double strand sequencing. Nucl Acids Res 18: 4948 (1990).

    PubMed  Google Scholar 

  38. Schmit A-C, Lambert A-M: Characterization and dynamics of cytoplasmic F-actin in higher plant endosperm cells during interphase, mitosis, and cytokinesis. J Cell Biol 105: 2157–2166 (1987).

    Article  PubMed  Google Scholar 

  39. Slater A, Maunders MJ, Edwards K, Schuch W, Grierson D: Isolation and characterization of cDNA clones for tomato polygalacturonase and other ripening-related proteins. Plant Mol Biol 5: 137–147 (1985).

    Google Scholar 

  40. Theologis A: One rotten apple spoils the whole bushel: the role of ethylene in fruit ripening. Cell 70: 181–184 (1992).

    Article  PubMed  Google Scholar 

  41. Tonouchi N, Miwa K, Karasuyama H, Matsui H: Deletion of 3′ untranslated region of human BSF-2 mRNA causes stabilization of the mRNA and high-level expression in mouse NIH3T3 cells. Biochem Biophys Res Comm 163: 1056–1062 (1989).

    PubMed  Google Scholar 

  42. Towbin H, Staehelin T, Gordon J: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedures and some applications. Proc Natl Acad Sci USA 76: 4350–4354 (1979).

    PubMed  Google Scholar 

  43. Twell D, Ooms G: Structural diversity of the patatin gene family in potato cv. Désirée. Mol Gen Genet 212: 325–336 (1988).

    Article  PubMed  Google Scholar 

  44. VanHaaren MJJ, Houck CM: Strong negative and positive regulatory elements contribute to the high-level fruit-specific expression of the tomato 2A11 gene. Plant Mol Biol 17: 615–630 (1991).

    PubMed  Google Scholar 

  45. VanHaaren MJJ, Houck CM: A functional map of the fruit-specific promoter of the tomato 2A11 gene. Plant Mol Biol 21: 625–640 (1993).

    PubMed  Google Scholar 

  46. Veidt I, Bouzoubaa SE, Leiser R-M, Ziegler-Graf V, Guilley H, Richards K, Jonard G: Synthesis of full-length transcripts of beet Western Yellows virus RNA: Messenger properties and biological activities in protoplasts. Virology 186: 192–200 (1992).

    Article  PubMed  Google Scholar 

  47. Zhang H, Scholl R, Browse J, Somerville C: Double-stranded DNA sequencing as a choice for DNA sequencing. Nucl Acids Res 16: 1220 (1988).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pozueta-Romero, J., Klein, M., Houlné, G. et al. Characterization of a family of genes encoding a fruit-specific wound-stimulated protein of bell pepper (Capsicum annuum): identification of a new family of transposable elements. Plant Mol Biol 28, 1011–1025 (1995). https://doi.org/10.1007/BF00032663

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00032663

Key words

Navigation