Skip to main content
Log in

Biological and biochemical properties of new anticancer folate antagonists

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Summary

We review the biology and biochemical pharmacology of four antifolates that were recently introduced into clinical trial as anticancer agents, and one compound in preclinical development. Toxicology and clinical data are not discussed. 10-Ethyl-10-deazaaminopterin (10-EdAM) is a classical antifolate, structurally related to methotrexate (MTX) but with greater activity against murine tumors. 10-EdAM has more efficient membrane transport, and relatively greater polyglutamylation in murine tumors than in normal mouse tissues, and these differential effects are greater for 10-EdAM than for other 10-deaza antifolates or for MTX. Trimetrexate and piritrexim are nonclassical antifolates, lacking a glutamate substitution. They are lipophilic, cross cell membranes more rapidly than does MTX, and retain activity against tumors resistant to MTX because of impaired drug transport. These nonclassical antifolates are active against several MTX-insensitive murine tumors, and both have demonstrated clinical anticancer activity. 10-EdAM, trimetrexate and piritrexim all inhibit dihydrofolate reductase (DHFR) as their primary site of action. As such, they deplete cellular thymidylate and purine pools, and inhibit DNA replication. N10-Propargyl-5,8-dideazafolic acid (CB3717) differs from the first three compounds in acting primarily on thymidylate synthase. Like DHFR inhibitors, it blocks DNA replication through depletion of dTTP, but it does not exert an antipurine effect. CB3717 retains activity against transport-defective MTX-resistant cells, and also against cells that overproduce DHFR. 5,10-Dideazatetrahydrofolic acid (DDATHF) is a selective inhibitor of glycinamide ribotide transformylase, and its biochemical pharmacology may differ appreciably from that of the other intifolates under study. DDATHF has strong antitumor activity in several murine systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roth, B, Cheng, CC: Recent progress in the medicinal chemistry of 2,4-diaminopyrimidines. Prog Med Chem 19: 269–331, 1982

    Google Scholar 

  2. Montgomery, JA, Piper, JR: Design and synthesis of folate analogs as antimetabolites. In: Sirotnak, FM, Burchall, JJ, Ensminger, WD, Montgomery, JA (eds) Folate antagonists as therapeutic agents, 1. Academic Press, Orlando, 1984, pp 219–260

    Google Scholar 

  3. Werbel, LM: Design and synthesis of lipophilic antifols as anticancer agents. In: Sirotnak, FM, Burchall, JJ, Ensminger, WD, Montgomery, JA (eds) Folate antagonists as therapeutic agents, 1. Academic Press, Orlando, 1984, pp 261–287

    Google Scholar 

  4. Hill, BT, Price, LA: DDMP (2,4-diamino-5-(3′,4′-dichlorophenyl)-6-methylpyrimidine). Cancer Treat Rev 7: 95–112, 1980

    Google Scholar 

  5. Hutchison, DJ, Schmid, FA: Experimental cancer chemotherapy with folate antagonists. In: Sirotnak, FM, Burchall, JJ, Ensminger, WD, Montgomery, JA (eds) Folate antagonists as therapeutic agents, 2. Academic Press, Orlando, 1984, pp 1–22

    Google Scholar 

  6. Sirotnak, FM, DeGraw, JI: Selective antitumor action of folate analogs. In: Sirotnak, FM, Burchall, JJ, Ensminger, WD, Montgomery, JA (eds) Folate antagonists as therapeutic agents, 2. Academic Press, Orlando, 1984, pp 43–95

    Google Scholar 

  7. Freisheim, JH, Matthews, DA: The comparative biochemistry of dihydrofolate reductase. In: Sirotnak, FM, Burchall, JJ, Ensminger, WD, Montgomery, JA (eds) Folate antagonists as therapeutic agents, 1. Academic Press, Orlando, 1984, pp 69–131

    Google Scholar 

  8. Taylor, IW, Tattersall, MHN: Methotrexate cytotoxicity in cultured human leukemic cells studied by flow cytometry. Cancer Res 41: 1549–1558, 1981

    Google Scholar 

  9. Jackson, RC, Grindey, GB: The biochemical basis for methotrexate cytotoxicity. In: Sirotnak, FM, Burchall, JJ, Ensminger, WD, Montgomery, JA (eds) Folate antagonists as therapeutic agents, 1. Academic Press, Orlando, 1984, pp 289–315

    Google Scholar 

  10. DeGraw, JI, Brown, VH, Tagawa, H, Kisliuk, RL, Gaumont, Y, Sirotnak, FM: Synthesis and antitumor activity of 10-alkyl-10-deazaaminopterin. A convenient synthesis of 10-deazaaminopterin. J Med Chem 25: 1227–1230, 1982

    Google Scholar 

  11. Elslager, EF, Davoll, J: Synthesis of fused pyrimidines as folate antagonists. In: Castle, RN and Townsend, LR (eds) Lectures in heterocyclic chemistry, vol. 2. Hetero Corp, Orem Utah, 1974, pp S97-S133

    Google Scholar 

  12. Elslager, EF, Johnson, JL, Werbel, LM: Folate antagonists 20. Synthesis, antitumor, and antimalarial properties of trimetrexate and related 6-((phenylamino)-methyl)-2,4-quinazoline-diamines. J Med Chem 26: 1753–1760, 1983

    Google Scholar 

  13. Grivsky, EM, Lee, S, Sigel, CW, Duch, DS, Nichol, CA: Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido [2,3-d] pyrimidine. J Med Chem 23: 327–329, 1980

    Google Scholar 

  14. Jones, TR, Calvert, AH, Jackman, AL, Brown, SJ, Jones, M, Harrap, KR: A potent antitumour quinazoline inhibitor of thymidylate synthetase: synthesis, biological properties and therapeutic results in mice. Eur J Cancer 17: 11–19, 1981

    Google Scholar 

  15. Taylor, EC, Wong, G, Fletcher, SR, Harrington, PJ, Shih, CJ, Beardsley, GP: Synthesis of 5,10-dideaza-5,6,7,8-tetrahydrofolic acid (DDATHF) and analogs. In: Cooper, BA, Whitehead, VM (eds) Pteridines and folic acid derivatives. De Gruyter, Berlin, 1986, pp 61–68

    Google Scholar 

  16. DeGraw, JI: Synthesis and antifolate activity of 10-deazaaminopterin. J Med Chem 17: 552–552, 1974

    Google Scholar 

  17. Sirotnak, FM, DeGraw, JI, Moccio, DM, Dorick, DM: Antitumor properties of a new folate analog, 10-deaza-aminopterin, in mice. Cancer Treat Rep 62: 1047–1052, 1978

    Google Scholar 

  18. Sirotnak, FM, DeGraw, JI, Chello, PL, Moccio, DM, Dorick, DM: Biochemical and pharmacologic properties of a new folate analog, 10-deaza-aminopterin, in mice. Cancer Treat Rep 66: 351–358, 1982

    Google Scholar 

  19. Currie, VE, Warrell, RP, Arlin, Z, Tan, C, Sirotnak, FM, Greene, G, Young, CW: Phase I trial of 10-deaza-aminopterin in patients with advanced cancer. Cancer Treat Rep 67: 149–154, 1983

    Google Scholar 

  20. Sirotnak, FM: Correlates of folate analog transport, pharmacokinetics and selective antitumor action. Pharmac Ther 8: 71–103, 1980

    Google Scholar 

  21. Goldman, ID, Matherly, LH: The cellular pharmacology of methotrexate. Pharmac Ther 28: 77–102, 1985

    Google Scholar 

  22. Sirotnak, FM, DeGraw, JI, Moccio, DM, Samuels, LL, Goutas, LJ: New folate analogs of the 10-deaza-aminopterin series. Basis for structural design and biochemical and pharmacologic properties. Cancer Chemother Pharmacol 12: 18–25, 1984

    Google Scholar 

  23. Margolis, S, Philips, FS, Sternberg, SS: The cytotoxicity of methotrexate in mouse small intestine in relation to inhibition of folic acid reductase and DNA synthesis. Cancer Res 31: 2037–2046, 1971

    Google Scholar 

  24. Sirotnak, FM, DeGraw, JI, Schmid, FA, Goutas, LJ, Moccio, DM: New folate analogs of the 10-deaza-aminopterin series. Further evidence for markedly increased antitumor efficacy compared with methotrexate in ascitic and solid murine tumor models. Cancer Chemother Pharmacol 12: 26–30, 1984

    Google Scholar 

  25. Moccio, DM, Sirotnak, FM, Samuels, LL, Ahmed, T, Yagoda, A, DeGraw, JI, Piper, JR: Similar specificity of membrane transport for folate analogues and their metabolites by murine and human tumor cells: a clinically directed laboratory study. Cancer Res 44: 352–357, 1984

    Google Scholar 

  26. Chabner, BA, Allegra, CJ, Curt, GA, Clendeninn, NJ, Baram, J, Koizumi, S, Drake, JC, Jolivet, J: Polyglutamation of methotrexate. Is methotrexate a prodrug. J Clin Invest 76: 907–912, 1985

    Google Scholar 

  27. Goldman, ID: Proceedings of the second workshop on folyl and antifolyl polyglutamates. Praeger Publishers, Westport, Connecticut, 1985

    Google Scholar 

  28. Samuels, LL, Moccio, DM, Sirotnak, FM: Similar differential for total polyglutamylation and cytotoxicity among various folate analogues in human and murine tumor cells in vitro. Cancer Res 45: 1488–1495, 1985

    Google Scholar 

  29. Kinahan, JJ, Samuels, LL, Farag, F, Fanucchi, MP, Vidal, PM, Sirotnak, FM, Young, CW: Fluorometric high-performance liquid chromatographic analysis of 10-deazaaminopterin, 10-ethyl-10-deazaaminopterin, and known metabolites. Analyt Biochem 150: 203–213, 1985

    Google Scholar 

  30. Kinahan, J, Samuels, L, Farag, F, Sirotnak, F, Young, C: Fluorometric HPLC analysis of 10-deaza-aminopterin (10-dAM), 10-ethyl-10-deaza-aminopterin (10-EdAM), and polyglutamated derivatives in tumor and biological samples. Proc Am Assoc Cancer Res 25: 310, 1984

    Google Scholar 

  31. Ueda, T, Dutschman, GE, Nair, MG, DeGraw, JI, Sirotnak, FM, Cheng, YC: Inhibitory action of the 10-deazaaminopterins and their polyglutamates on human thymidylate synthetase. Proc Amer Assoc Cancer Res 27: 258, 1986

    Google Scholar 

  32. Kisliuk, RL, Gaumont, Y, Kumar, P, Nair, MG: Inhibition of thymidylate synthase by antifolylpolyglutamates. In: Cooper, BA, Whitehead, VM (eds) Pteridines and folic acid derivatives. DeGruyter, Berlin, 1986, pp 989–992

    Google Scholar 

  33. Mandelbaum-Shavit, F. Effect of antifolates 10-methyland 10-ethyl-10-deazaaminopterin on a human breast cancer cell line. In: Cooper, BA, Whitehead, VM (eds) Pteridines and folic acid derivatives. DeGruyter, Berlin, 1986, in press

    Google Scholar 

  34. Sirotnak FM: Biochemical pharmacologic and antitumor properties of 10-ethyl-10-deazaaminopterin. Cancer Treat Symposia, 1986, pp 855–859

  35. Schmid, FA, Sirotnak, FM, Otter, GM, DeGraw, JI: New folate analogs of the 10-deaza-aminopterin series: markedly increased antitumor activity of the 10-ethyl analog compared to the parent compound and methotrexate against some human tumor xenografts in nude mice. Cancer Treat Rep 69: 551–553, 1985

    Google Scholar 

  36. Kinahan, J, Fanucchi, M, Vidal, P, Chou, TC, Sternberg, S, Farag, F, Niedzwiecki, D, Samuels, L, Sirotnak, F, Young, C: Preclinical toxicology and pharmacology of 10-ethyl-10-deaza-aminopterin (10-EdAM). Proc Am Assoc Cancer Res 26: 356, 1985

    Google Scholar 

  37. Ohnoshi, T, Ohnuma, T, Holland, JF: Establishment of methotrexate (MTX)-resistant human acute lymphocytic leukemia cells in culture and effects of various antifols. Proc Am Assoc Cancer Res 21: 298, 1980

    Google Scholar 

  38. Ohnuma, T, Lo, RJ, Scanlon, KJ, Kamen, BA, Ohnoshi, T, Wolman, SR, Holland, JF: Evolution of methotrexate resistance of human acute lymphoblastic leukemia cells in vitro. Cancer Res 45: 1815–1822, 1985

    Google Scholar 

  39. Diddens, H, Niethammer, D, Jackson, RC: Patterns of cross-resistance to the antifolate drugs trimetrexate, metoprine, homofolate, and CB3717 in human lymphoma and osteosarcoma cells resistant to methotrexate. Cancer Res 43: 5286–5292, 1983

    Google Scholar 

  40. Mini, E, Moroson, BA, Franco, CT, Bertino, JR: Cytotoxic effects of folate antagonists against methotrexate-resistant human leukemic lymphoblast CCRF-CEM cell lines. Cancer Res 45: 325–330, 1985

    Google Scholar 

  41. Frei, E, Rosowsky, A, Wright, JE, Cucchi, CA, Lippke, JA, Ervin, TJ, Jolivet, J, Haseltine, WA: Development of methotrexate resistance in a human squamous cell carcinoma of the head and neck in culture. Proc Natl Acad Sci USA 81: 2873–2877, 1984

    Google Scholar 

  42. Kamen, BA, Eibl, B, Cashmore, A, Bertino, J: Uptake and efficacy of trimetrexate (TMQ, 2,4-diamino-5-methyl-6-[(3,4,5-trimethoxyanilino)methyl] quinazoline), a nonclassical antifolate in methotrexate-resistant leukemia cells in vitro. Biochem Pharmacol 33: 1697–1699, 1984

    Google Scholar 

  43. Kamen, BA, Eibl, B, Cashmore, AR, Whyte, WL, Moroson, BA, Bertino, JR: Efficacy and transport of a new lipid soluble antifol, 2,4-diamino-5-methyl-6-[(3,4,5-trimethoxyanilino)methyl] quinazoline (TMQ); JB-11) in methotrexate resistant cells. Proc Am Assoc Cancer Res 22: 26, 1981

    Google Scholar 

  44. Jackson, RC, Fry, DW, Boritzki, TJ, Besserer, JA, Leopold, WR, Sloan, BJ, Elslager, EF: Biochemical pharmacology of the lipophilic antifolate, trimetrexate. Adv Enz Reg 22: 187–206, 1984

    Google Scholar 

  45. Besserer, JA, Fry, DW, Boritzki, TJ, Jackson, RC: Studies on cellular resistance and membrane transport with the quinazoline antifolate, trimetrexate. Fed Proc 43: 91, 1984

    Google Scholar 

  46. Fry, DW, Besserer, JA, Boritzki, TJ, Jackson, RC, Elslager, EF: Impaired cellular uptake as a mechanism of resistance to lipophilic antifolates. Proc Am Assoc Cancer Res 26: 340, 1985

    Google Scholar 

  47. Duch, DS, Edelstein, MP, Bowers, SW, Nichol, CA: Biochemical and chemotherapeutic studies on 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine (BW301U), a novel lipid-soluble inhibitor of dihydrofolate reductase. Cancer Res 42: 3987–3994, 1982

    Google Scholar 

  48. Hill, BT, Price, LA, Goldie, JH: Methotrexate resistance and uptake of DDMP by L5178Y cells. Europ J Cancer 11: 545–553, 1975

    Google Scholar 

  49. Hill, BT, Price, LA, Harrison, SI, Goldie, JH: Studies on the transport and distribution of diaminopyrimidines in L5178Y lymphoblasts in cell culture. Biochem Pharmacol 24: 535–538, 1975

    Google Scholar 

  50. Greco, WR, Hakala, MT: Cellular pharmacokinetics of lipophilic diaminopyrimidine antifolates. J Pharmacol Exper Ther 212: 39–46, 1980

    Google Scholar 

  51. Arkin, H, Ohnuma, T, Takemura, Y, Kamen, BA, Kano, Y, Holland, JF: Development and characterization of a trimetrexate (TMTX, TMQ, JB-11)-resistant human acute lymphoblastic leukemia cell line. Proc Am Assoc Cancer Res 26: 25, 1985

    Google Scholar 

  52. Mini, E, Sobrero, A, Moroson, BA, Bertino, JR: Differential efficacy of trimetrexate (2,4-diamino-6-methyl-(3,4,5-trimethoxyanilino)methyl) quinazoline, JB-11, TMQ) and methotrexate (MTX) on human colon carcinoma and human leukemia cells in vitro. Proc Am Assoc Cancer Res 26: 230, 1985

    Google Scholar 

  53. Borman, LS, McCormack, JJ: Studies in vitro of the effects of 2,4-diamino-5-methyl-6-[(3,4,5-trimethoxyanilino)methyl]-quinazoline (TMQ; trimetrexate) on rat colon carcinoma and L1210 cells. Proc Am Assoc Cancer Res 25: 311, 1984

    Google Scholar 

  54. Klohs, WD, Steinkampf, RW, Besserer, JA, Fry, DW: Cross resistance of pleiotropically drug resistant P388 leukemia cells to the lipophilic antifolates trimetrexate and BW301U. Cancer Lett, 31: 253–260, 1986

    Google Scholar 

  55. Ramu, N, Ramu, A, Pollard, HB, Balis, F, Poplack, DG: Resistance to trimetrexate (TMQ) is related to pleiotropic drug resistance. Proc Am Assoc Cancer Res 27: 391, 1986

    Google Scholar 

  56. Arkin, H, Ohnuma, T, Holland, JF, Greenspan, EM: Multi-drug (pleiotropic) resistance in trimetrexate (TMQ)-resistant human acute lymphomablastic leukemia (ALL) cell line, MOLT-3. Proc Am Assoc Cancer Res 27: 269, 1986

    Google Scholar 

  57. Sobrero, AF, Bertino, JR: Alternating trimetrexate (TMQ) with methotrexate (MTX) delays the onset of resistance to antifolates in vitro and in vivo. Proc Am Assoc Cancer Res 27: 269, 1986

    Google Scholar 

  58. Bertino, JR, Sawicki, WL: Potent inhibitory activity of trimethoxyquine (TMQ), ‘nonclassical” 2,4 diaminoquinazoline, on mammalian DNA synthesis. Proc Am Assoc Cancer Res 18: 168, 1977

    Google Scholar 

  59. Bertino, JR, Sawicki, WL, Moroson, BA, Cashmore, AR, Elslager, EF: 2,4-diamino-5-methyl-6-[3,4,5-trimethoxyanilino) quinazoline (TMQ), a potent non-classical folate antagonist inhibitor-I. Biochem Pharmacol 28: 1983–1987, 1979

    Google Scholar 

  60. Heusner, JJ, McCormack, JJ: Enzymatic assays for 2,4-diamino-5-methyl-6-[3,4,5-trimethoxyanilino) methyl] quinazoline, a promising new ‘nonclassical’ antifolate. J Pharm Sci 70: 827–828, 1981

    Google Scholar 

  61. Broome, MG, Johnson, RK, Wodinsky, I: Biochemical and biological characterization of two new antifols, NSC 127755 and TMQ, in comparison with methotrexate. Proc Am Assoc Cancer Res 21: 309, 1980

    Google Scholar 

  62. Broome, MG, Johnson, RK, Evans, SF, Wodinsky, I: Leucovorin reversal studies with TMQ and a triazine antifol in comparison with methotrexate. Proc Am Assoc Cancet Res 23: 178, 1982

    Google Scholar 

  63. Bertino, JR, Mini, E, Sawicki, WL, Moroson, BA, Jastreboff, M, McGuire, JJ: Effects of trimetrexate on human leukemia cells from patients sensitive and resistant to methotrexate (MTX). Proc Am Soc Clin Oncol 4: 44, 1985

    Google Scholar 

  64. Browman, GP, Spiegl, P, Booker, L, Rosowsky, A: Comparison of leucovorin protection from variety of antifolates in human lymphoid cell lines. Cancer Chemother Pharmacol 15: 111–114, 1985

    Google Scholar 

  65. McCormack, JJ, Heusner, JJ, Hacker, MP, Mathews, LA: Further pharmacological studies of 2,4-diamino-methyl-6-[(3,4,5-trimethoxyanilino)methyl]quinazoline (NSC 249008; TMQ). Proc Am Assoc Cancer Res 22: 245, 1981

    Google Scholar 

  66. Hook, KE, Nelson, JM, Roberts, BJ, Griswold, DP, Leopold, WR: Cell cycle effects of trimetrexate (CI-898). Cancer Chemother Pharmacol 16: 116–120, 1986

    Google Scholar 

  67. Lathan, B, Von Hoff, D, Elslager, E, Rodriguez, V: Activity of trimetrexate (TMQ) a non-classical antifolate in a human tumor cloning system. Proc Am Assoc Cancer Res 24: 278, 1983

    Google Scholar 

  68. McCormack, JJ, Heusner, JJ, Mathews, LA: Preclinical studies with 2,4-diamino-5-methyl-6-[3,4,5-trimethoxyanilino)methyl]quinazoline (NSC 249008) A ‘non-classical’ antifolate. Proc Am Assoc Cancer Res 21: 294, 1980

    Google Scholar 

  69. O'Dwyer, PJ, Shoemaker, DD, Plowman, J, Cradock, J, Grillo-Lopez, A, Leyland-Jones, B: Trimetrexate: a new antifol entering clinical trials. Invest New Drugs 3: 71–75, 1985

    Google Scholar 

  70. Leopold WR, Dykes DD, Griswold Jr DP: Therapeutic synergy of trimetrexate (CI-898) in combination with doxorubicin, vincristine, cytoxan, 6-thioguanine, cisplatin, or 5-fluorouracil against intraperitoneally implanted P388 leukemia. Cancer Treatment Symposium, in press, 1986

  71. Leopold, WR, Dykes, DD, Griswold Jr, DP: Therapeutic synergy of trimetrexate (CI-898) in combination with doxorubicin, cytoxan, 6-thioguanine, 5-fluorouracil, vincristine, or cisplatin against P388 leukemia. Proc Am Assoc Cancer Res 27: 253, 1986

    Google Scholar 

  72. Weir, EC, Cashmore, AR, Dreyer, RN, Graham, ML, Hsiao, N, Moroson, BA, Sawicki, WL, Bertino, JR: Pharmacology and toxicity of a potent ‘nonclassical’ 2,4-diamino quinazoline folate antagonist, trimetrexate, in normal dogs. Cancer Res 42: 1696–1702, 1982

    Google Scholar 

  73. Gans, JH, Tong, WP, Whitfield, LR, Mathews, LA, McCormack, JJ: Pharmacokinetic studies with trimetrexate in dogs. Proc Am Assoc Cancer Res 27: 405, 1986

    Google Scholar 

  74. Schornagel, JH, Weir, EC, Harris, RL, Graham, ML, Cashmore, AR, Bertino, JR: Trimetrexate in normal and lymphoma-bearing dogs: pharmacology, toxicity and antitumor effects. Invest New Drugs 2: 115, 1984

    Google Scholar 

  75. Balis, FM, Lester, CM, Poplack, DG: Pharmacokinetics of methotrexate (NSC 352122) in monkeys. Cancer Res 46: 169–174, 1986

    Google Scholar 

  76. Fanucchi, M, Fleisher, M, Vidal, P, Williams, L, Bauer, T, Cassidy, C, Chou, T-C, Young, C: Phase I and pharmacologic study of trimetrexate (TMTX). Proc Am Assoc Cancer Res 26: 179, 1985

    Google Scholar 

  77. Rosen, M, Ohnuma, T, Zimet, A, Coffey, V, Zhang, N, Holland, JF: Phase I study of trimetrexate (TMTX, TMQ, JB-11) glucuronate in a 5-day infusion schedule. Proc Am Assoc Cancer Res 27: 172, 1986

    Google Scholar 

  78. Donehower, RC, Graham, ML, Thompson, GE, Dole, GB, Ettinger, DS: Phase I and pharmacokinetic study of trimetrexate (TMTX) in patients with advanced cancer. Proc Am Soc Clin Oncol 4: 32, 1985

    Google Scholar 

  79. Legha, S, Tenney, D, Ho, DH, Krakoff, I: Phase I clinical & pharmacology study of trimetrexate (TMQ) Proc Am Soc Clin Oncol 4: 48, 1985

    Google Scholar 

  80. Ho, DHW, Covington, WP, Legha, S, Newman, RA, Krakoff, IH: Clinical pharmacology of trimetrexate (TMX). Proc Am Assoc Cancer Res 27: 173, 1986

    Google Scholar 

  81. Heusner, JJ, Tong, WP, McCormack, JJ, Mathews, LA: Disposition of the non-classical folate antagonist 2,4-diamino-5-methyl-6-(3,4,5-trimethoxyanilino) methyl quinazoline (TMQ; trimetrexate) in mice. Proc Am Assoc Cancer Res 26: 234, 1985

    Google Scholar 

  82. Webster, LK, Tong, WP, Mathews, LA, Stewart, JA: Studies of a metabolite of trimetrexate. Proc Am Assoc Cancer Res 27: 256, 1986

    Google Scholar 

  83. Webster, LK, Tong, WP, McCormack, JJ: Elimination of trimetrexate (TMTX) by the isolated, perfused rat liver. Proc Am Assoc Cancer Res 26: 120, 1985

    Google Scholar 

  84. Webster, LK, Tong, WP, McCormack, JJ: Effect of hypoxia on metabolism of trimetrexate in isolated perfused rat livers. Proc Am Assoc Cancer Res 27: 405, 1986

    Google Scholar 

  85. Heusner, JJ, Franklin, MR: Inhibition of metabolism of the ‘nonclassical’ antifolate, trimetrexate(2,4-diamino-5-methyl-6-[(3,4,5-trimethoxyanilino)methyl]quinazoline) by drugs containing an imidazole moiety. Pharmacol 30: 266–272, 1985

    Google Scholar 

  86. Hurlbert, BS, Ledig, KW, Valenti, BF, Hitchings, GH: Studies on condensed pyrimidine systems. XXIII. Synthesis of 2,4-diaminopyrido[2,3-d]pyrimidines from beta-keto esters. J Med Chem 11: 703–707, 1968

    Google Scholar 

  87. Hurlbert, BS, Valenti, BF: Studies on condensed pyrimidine systems. XXIV. The condensation of 2,4,6-triaminopyrimidine with malondialdehyde derivatives. J Med Chem 11: 708–710, 1968

    Google Scholar 

  88. Hurlbert, BS, Ferone, R, Herrmann, TA, Hitchings, GH: Studies on condensed pyrimidine systems. XXV. 2,4-diaminopyrido-[2,3-d]pyrimidines. Biological data. J Med Chem 11: 711–717, 1968

    Google Scholar 

  89. Duch, DS, Sigel, CW, Bowers, SW, Edelstein, MP, Cavallito, JC, Foss, RG, Nichol, CA: Lipid-soluble inhibitors of dihydrofolate reductase: selection and evaluation of the 2,4-diaminopyridopyrimidine BW 301U and related compounds as anticancer agents. In: Nelson, JD, Grassi, C (eds) Current chemotherapy and infectious disease. The American Society for Microbiology, Washington DC, 1980, pp 1597–1599

    Google Scholar 

  90. Duch, DS, Edelstein, MP, Nichol, CA: Inhibition of histamine metabolizing enzymes and elevation of histamine (HA) levels in tissues by anticancer folate antagonists. Pharmacologist 21: 266, 1979

    Google Scholar 

  91. Duch, DS, Edelstein, MP, Nichol, CA: Inhibition of histamine-metabolizing enzymes and elevation of histamine levels in tissues by lipid-soluble anticancer folate antagonists. Mol Pharmacol 18: 100–104, 1980

    Google Scholar 

  92. Sedwick, WD, Hamrell, M, Brown, OE, Laszlo, J: Metabolic inhibition by a new antifolate, 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methyl-pyrido[2,3-d]pyrimidine (BW301U), an effective inhibitor of human lymphoid and dihydrofolate reductase-overproducing mouse cell lines. Mol Pharmacol 22: 766–770, 1982

    Google Scholar 

  93. Hamrell, M, Laszlo, J, Brown, OE, Sedwick, WD: Toxicity of methotrexate and metoprine in a dihydrofolate reductase gene-amplified mouse cell line. Mol Pharmacol 20: 637–643, 1981

    Google Scholar 

  94. Taylor, IW, Slowiaczek, P, Friedlander, ML, Tattersall, MHN: Selective toxicity of a new lipophilic antifolate, BW301U, for methotrexate-resistant cells with reduced drug uptake. Cancer Res 45: 978–982, 1985

    Google Scholar 

  95. Sedwick, WD, Birdwell, R, Laszlo, J: Lipid-soluble pyridopyrimidine, BW301U, with metabolic inhibitory capacity equal to methotrexate in human lymphoblastoid, normal myeloid, human leukemia, and dihydrofolate reductase-overproducing mouse cells. In: Nelson, JD, Grassi, C (eds) Current chemotherapy and infectious disease. The American Society for Microbiology, Washington DC, 1980, pp 1593–1595

    Google Scholar 

  96. Iland, HJ, Laszlo, J, Sedwick, WD: Paradoxical effect of BW 301U, a lipophilic antifolate, on methotrexate-inhibitable deoxyuridine incorporation by human hematopoietic cells. Cancer Res 45: 3962–3968, 1985

    Google Scholar 

  97. Sedwick, WD, Fyfe, MJ, Brown, OE, Frazer, TA, Kutler, M, Laszlo, J: Deoxyuridine incorporation as a useful measure of methotrexate and metoprine uptake and metabolic effectiveness. Mol Pharmacol 16: 607–613, 1979

    Google Scholar 

  98. Richards, RG, Sowers, LC, Laszlo, J, Sedwick, WD: The occurrence and consequences of deoxyuridine in DNA. Adv in Enzyme Regul 22: 157–185, 1984

    Google Scholar 

  99. Sigel CW, Macklin AW, Woolley JL, Blum MR, Clendenin NJ, Everitt BS, Foss RG, Duch DS, Nichol CA: Preclinical biochemical pharmacology and toxicology of piritrexim, a lipophilic inhibitor of dihydrofolate reductase. Cancer Treatment Symposia, in press, 1986

  100. Laszlo, J, Iland, HJ, Sedwick, WD: Overcoming methotrexate resistance by a lipophilic antifolate (BW301U): from theory to models to practice. Advances in Enzyme Regul 24: 357–375, 1986

    Google Scholar 

  101. Jackman, AL, Jones, TR, Calvert, AH: Thymidylate synthetase inhibitors: experimental and clinical aspects. In: Muggia, FM (ed) Experimental and clinical progress in cancer chemotherapy. Martinus Nijhoff, Boston, 1985

    Google Scholar 

  102. Jackson, RC, Jackman, AL, Calvert, AH: Biochemical effects of a quinazoline inhibitor of thymidylate synthetase, CB3717, on human lymphoblastoid cells. Biochem Pharmacol 32: 3783–3790, 1983

    Google Scholar 

  103. Diddens, H, Niethammer, D, Jackson, RC: Human cells resistant to methotrexate: sensitivity to the nonclassical antifolates trimetrexate, metoprine, homofolic acid and CB3717. In: Blair, JA (ed) Chemistry and Biology of Pteridines. DeGruyter, Berlin, 1983, pp 953–957

    Google Scholar 

  104. Cheng, YC, Dutschman, GE, Starnes, MC, Fisher, MH, Nanavathi, NT, Nair, MG: Activity of the new antifolate N10-propargyl-5,8-dideazafolate and its polyglutamates against human dihydrofolate reductase, human thymidylate synthetase, and KB cells containing different levels of dihydrofolate reductase, Cancer Res 45: 598–600, 1985

    Google Scholar 

  105. Jackman, AL, Alison, DL, Calvert, AH, Harrap, KR: Increased thymidylate synthase in L1210 cells possessing acquired resistance to N10-propargyl-5,8-dideazafolic acid (CB3717): development, characterization, and cross-resistance studies. Cancer Res 46: 2810–2815, 1986

    Google Scholar 

  106. Jackman, AL, Calvert, AH, Hart, LI, Harrap, KR: Inhibition of thymidylate synthetase by the new quinazoline antifolate CB3717: enzyme purification and kinetics. In: DeBruyn, CHM, Simmonds, HA, Muller, MM (eds) Purine metabolism in man, IV part B. Biochemical, immunological and cancer research. Plenum Publishing Corp. New York, 1984, pp 375–378

    Google Scholar 

  107. Sikora, E, Pawelczak, K, Rzeszotarska, B, Harrap, KR, Calvert, AH, Jones, TR, Jackman, AL, Newell, DR: N10-propargyl-5,8-dideazafolic acid: intracellular binding and polyglutamylation. In: Cooper, BA, Whitehead, VM (eds) Pteridines and folic acid derivatives. DeGruyter, Berlin, 1986, pp 675–679

    Google Scholar 

  108. Jackman, AL, Moran, RG, Calvert, AH: The reversal of the cytotoxicity of folate-based thymidylate synthase inhibitors in cultured L1210 cells. In: Cooper, BA, Whitehead, VM (eds) Pteridines and folic acid derivatives. DeGruyter, Berlin, 1986, pp 644–649

    Google Scholar 

  109. Manteuffel-Cymborowska, Kaminska, B, Grzelakowska-Sztabert, B: Polyglutamylation of the thymidylate synthetase inhibitor, N10-propargyl-5,8-dideazafolic acid (CB3717) in organs of Ehrlich ascites carcinoma-bearing mice. In: Cooper, BA, Whitehead, VM (eds) Pteridines and folic acid derivatives. DeGruyter, Berlin, 1986, pp 993–996

    Google Scholar 

  110. Jackman, AL, Grzelakowska-Sztabert, B, Newell, DR, Calvert, AH, Harrap, KR: Transport studies with H CB3717. Brit J Cancer 52: 431, 1985

    Google Scholar 

  111. Alison, DL, Newell, DR, Calvert, AH: Pharmacokinetic studies in humans with CB3717. Brit J Cancer 48: 126, 1983

    Google Scholar 

  112. Newell, DR, Alison, DL, Jackman, AL, Sessa, C, Calvert, AH, Harrap, KR: Clinical and preclinical pharmacokinetic studies with the thymidylate synthetase inhibitor N10-propargyl-5,8-dideazafolic acid (CB3717). Proc Amer Assoc Cancer Res 26: 350, 1985

    Google Scholar 

  113. Moran, RG, Taylor, EC, Beardsley, GP: 5,10-dideaza-5,6,7,8-tetrahydrofolic acid, a potent antifolate inhibitory to de novo purine biosynthesis. Proc Amer Assoc Cancer Res 26: 231, 1985

    Google Scholar 

  114. Beardsley, GP, Taylor, EC, Grindey, GB, Moran, RG: Deaza derivatives of tetrahydrofolic acid. A new class of folate antimetabolite. In: Cooper, BA, Whitehead, VM (eds) Pteridines and folic acid derivatives. De Gruyter, Berlin, 1986, pp 953–957

    Google Scholar 

  115. Beardsley, GP, Taylor, EC, Shih, C, Poore, GA, Grindey, GB, Moran, RG: A new class of antifolates. 5,10-dideazatetrahydrofolic acid (DDATHF), an inhibitor of GAR transformylase with broad in vivo activity. Proc Amer Assoc Cancer Res 27: 259, 1986

    Google Scholar 

  116. Moran RG: Structural requirements for the activity of folate analogs as substrates for folylpolyglutamate synthetase. Cancer Treat Symp, in press, 1986

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fry, D.W., Jackson, R.C. Biological and biochemical properties of new anticancer folate antagonists. Cancer Metast Rev 5, 251–270 (1987). https://doi.org/10.1007/BF00047000

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00047000

Keywords

Navigation