Skip to main content
Log in

Systematics, reproductive isolation and species boundaries in monogonont rotifers

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The typological concept of rotifer species and the morphological basis of rotifer systematics is reviewed and alternatives proposed. Occasional sexuality in the cyclical parthenogenetic life cycle of monogononts permits application of the biological species concept to this group. Data from cross-mating experiments with Asplanchna, Brachionus and Epiphanes illustrate the usefulness of reproductive isolation as a criterion for species boundaries. Populations from different geographic regions are often interfertile indicating that rotifer species are genetically integrated over wide areas. The main types of isolating mechanisms operating in monogononts are reviewed. The role of behavioral reproductive isolation in maintaining species boundaries is examined. The use of a mate recognition bioassay which estimates the probability of copulation and quantifies the degree of isolation is described. Recent work of the mechanism of mate recognition is reviewed. It is concluded that the biological species concept is applicable to rotifers and that a more experimental approach to determining species boundaries is both feasible and desirable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Birky, C. W., Jr. & J. J. Gilbert, 1971. Parthenogenesis in rotifers: The control of sexual and asexual reproduction. Amer. Zool. 11: 245–266.

    Google Scholar 

  • Birky, C. W., Jr., 1967. Studies on the physiology and genetics of the rotifer Asplanchna. III. Results of outcrossing, selfing and selection. J. exp. Zool. 165: 104–116.

    Google Scholar 

  • Bogdan, K. G. & J. J. Gilbert, 1987. Quantitative comparison of food niches in some freshwater zooplankton. Oecologia 72: 331–340.

    Google Scholar 

  • Carlin, B., 1943. Die Planktonrotatorien des Motalastrom. Medd. Lunds Univ. Limnol. Institut., 258 pp.

  • Clement, P., E. Wurdak & J. Amsellem, 1983. Behavior and ultrastructure of sensory organs in rotifers. Hydrobiologia 104: 89–130.

    Google Scholar 

  • Dobzhansky, T., 1970. Genetics of the Evolutionary Process. Columbia University Press, New York, 505 pp.

    Google Scholar 

  • Giddings, L. V. & A. R. Templeton, 1983. Behavioral phylogenies and the direction of evolution. Science 220: 372–378.

    Google Scholar 

  • Gilbert, J. J., 1963. Contact chemoreceptors, mating behavior and reproductive isolation in the rotifer genus Brachionus. J. Exp. Biol. 40: 625–641.

    Google Scholar 

  • Gilbert, J. J., C. W. Birky, Jr. & E. S. Wurdak, 1979. Taxonomic relationships of Asplanchna brightwelli, A. intermedia and A. sieboldi. Arch. Hydrobiol. 87: 224–242.

    Google Scholar 

  • Hauser, C. L., 1987. The debate about the biological species concept — a review. Z. zool. Syst. Evolut.-forsch. 25: 241–257.

    Google Scholar 

  • Hebert, P. D. N., 1987. Genotypic characteristics of the cladocera. Hydrobiologia 145: 183–193.

    Google Scholar 

  • Hertel, E. W., 1942. Studies on vigor in the rotifer Hydatina senta. Physiol. Zool. 15: 304–324.

    Google Scholar 

  • Holman, E. W., 1987. Recognizability of sexual and asexual species of rotifers. Systematic Zoology 36: 381–386.

    Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology. Volume 2. Introduction to Lake Biology and Limnoplankton. John Wiley & Sons, New York, 1115 pp.

    Google Scholar 

  • Hutchinson, G. E., 1981. When are species necessary? In: Population Biology and Evolution, R. C. Lewontin (ed.), Syracuse University Press, Syracuse, NY: 177–186.

    Google Scholar 

  • King, C. E. & T. W. Snell, 1980. Density-dependent sexual reproduction in natural populations of the rotifer Asplanchna girodi. Hydrobiologia 73: 149–152.

    Google Scholar 

  • King, C. E., 1977. Genetics of reproduction, variation, and adaptation in rotifers. Arch. Hydrobiol. Beih. 8: 187–201.

    Google Scholar 

  • Lambert, D. M. & H. E. H. Paterson, 1983. On bridging the gap between race and species: The isolation concept and an alternative. Proc. linn. Soc. N.S.W. 107: 501–514.

    Google Scholar 

  • Littlejohn, M., 1981. Reproductive isolation: a critical review. In: Evolution and Speciation, W. R. Atchley & D. S. Woodruff (eds.), Cambridge University Press, Cambridge: 298–334.

    Google Scholar 

  • Mayr, E., 1963. Animal Species and Evolution. Belknap Press, Harvard University, Cambridge, MA.

    Google Scholar 

  • Mayr, E., 1970. Populations, Species and Evolution. Belknap Press, Harvard University, Cambridge, MA.

    Google Scholar 

  • Mayr, E. 1981. Biological classification: Toward a synthesis of opposing methodologies. Science 214: 510–516.

    Google Scholar 

  • Miracle, M., M. Serra, E. Vicente & C. Blanco, 1987. Distribution of Brachionus species in Spanish mediterranean wetlands. Hydrobiologia 147: 75–81.

    Google Scholar 

  • Nei, M., T. Maruyama & C. Wu, 1983. Models of evolution of reproductive isolation. Genetics 103: 557–579.

    Google Scholar 

  • Nevo, E. & R. R. Capranica, 1985. Evolutionary origin of ethological isolation in cricket frogs, Acris. Evol. Biol. 19: 147–214.

    Google Scholar 

  • Paterson, H. E. H., 1978. More evidence against speciation by reinforcement. S. African J. Science 74: 369–371.

    Google Scholar 

  • Paterson, H. E. H., 1980. A comment on ‘mate recognition systems’. Evolution 34: 330–331.

    Google Scholar 

  • Paterson, H. E. H., 1982. Perspectives on speciation by reinforcement. S. African J. Science 78: 53–57.

    Google Scholar 

  • Paterson, H. E. H., 1985. The recognition concept of species. In: Species and Speciation, E. S. Vrba (ed.), Transvaal Museum Monograph No. 4, Transvaal Museum, Pretoria, Rep. S. Africa: 21–29.

  • Pejler, B., 1956. Introgression in planktonic Rotatoria with some points of view on its causes and conceiveable results. Evolution 10: 246–261.

    Google Scholar 

  • Pejler, B., 1977a. General problems on rotifer taxonomy and global distribution. Arch. Hydrobiol. Beih. 8: 212–220.

    Google Scholar 

  • Pejler, B., 1977b. On the global distribution of the family Brachionidae (Rotatoria). Arch. Hydrobiol. Beih. Supplement 2: 255–306.

    Google Scholar 

  • Ruttner-Kolisko, A., 1963. The interrelationships of the Rotatoria. In: The Lower Metazoa, E. C. Dougherty, (ed.), Univ. Calif Press, Berkeley, Calif: 263–272.

    Google Scholar 

  • Ruttner-Kolisko, A., 1969. Kreuzungexperimente zwischen Brachionus urceolaris and Brachionus quadridentatus, ein Beitrag zur Fortpflanzungbiologie der heterogonen Rotatoria. Arch. Hydrobiologie 65: 397–412.

    Google Scholar 

  • Ruttner-Kolisko, A., 1974. Plankton Rotifers. Binnengewasser 26 suppl.: 1–146.

    Google Scholar 

  • Ruttner-Kolisko, A., 1983. The significance of mating processes for the genetics and for the formation of resting eggs in monogonont rotifers. Hydrobiologia 104: 181–190.

    Google Scholar 

  • Ruttner-Kolisko, A., 1985. Results of individual cross-mating experiments in three distinct strains of Brachionus plicatilis (Rotatoria). Verh. int. Ver. Limnol. 22: 2979–2982.

    Google Scholar 

  • Ryan, M. J. & W. Wilczynski, 1988. Coevolution of sender and receiver: Effect on local mate preference in cricket frogs. Science 240: 1786–1788.

    Google Scholar 

  • Shull, A. F., 1911. Studies in the life cycle of Hydatina senta. II. The role of temperature, of chemical composition of the medium, and of internal factors on the ratio of parthenogenetic to sexual forms. J. exp. Zool. 10: 117–166.

    Google Scholar 

  • Shull, A. F., 1915. Inheritance in Hydatina senta. IV. Characters of females and their parthenogenetic eggs. J. exp. Zool. 18: 145–186.

    Google Scholar 

  • Snell, T. W. & C. A. Hawkinson, 1983. Behavioral reproductive isolation among populations of the rotifer Brachionus plicatilis. Evolution 37: 1294–1305.

    Google Scholar 

  • Snell, T. W. & F. H. Hoff, 1987. Fertilization and male fertility in the rotifer Brachionus plicatilis. Hydrobiologia 147: 329–334.

    Google Scholar 

  • Snell, T. W., M. J. Childress & B. C. Winkler, 1988. Characteristics of the mate recognition factor in the rotifer Brachionus plicatilis. Comp. Biochem. Phys. 89A: 481–485.

    Google Scholar 

  • Snell, T. W. & M. A. Nacionales, 1989a. Sex pheromone communication in Brachious plicatilis (Rotifera). Submitted.

  • Snell, T. W. & M. A. Nacionales, 1989b. Localization of the mate recognition glycoprotein on the rotifer Brachionus plicatilis. Submitted.

  • Templeton, A. R., 1987. Species and speciation. Evolution 41: 233–235.

    Google Scholar 

  • Thornhill, R. & J. Alcock, 1983. The Evolution of Insect Mating Systems. Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Van Valen, L., 1982. Integration of species: Stasis and biogeography. Evol. Theory 6: 99–112.

    Google Scholar 

  • Wallace, R. L. & R. A. Colburn, 1989. Phylogenetic relationships within the phylum Rotifera: orders and genus Notholca. Hydrobiologia 186/187: 311–318.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Snell, T.W. Systematics, reproductive isolation and species boundaries in monogonont rotifers. Hydrobiologia 186, 299–310 (1989). https://doi.org/10.1007/BF00048925

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048925

Key words

Navigation