Skip to main content
Log in

Microbial metabolism of monoterpenes — recent developments

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Monoterpenes are important renewable resources for the perfume and flavour industry but the pathways and enzymology of their degradation by microorganisms are not well documented. Until recently the acyclic monoterpene alcohols, (+)-camphor and the isomers of limonene were the only compounds for which significant sections of catabolic pathways and associated enzymology had been reported. In this paper recent developments in our understanding of the enzymology of ring cleavage by microorganisms capable of growth with 1,8-cineole and α-pinene are described. 1,8-Cineole has the carbocyclic skeleton of a monocyclic monoterpene with the added complication of an internal ether linkage. Ring hydroxylation strategy and biological Baeyer-Villiger oxygenation lead to an efficient method for cleaving the ether linkage. α-Pinene is an unsaturated bicyclic monoterpene hydrocarbon. At least two catabolic pathways exist. Information concerning one of them, in which α-pinene may be initially converted into limonene, is rudimentary. The other involves attack at the double bond resulting in formation of α-pinene epoxide. Ring cleavage is then catalysed by a novel lyase that requires no additional components and breaks both carbocyclic rings in a concerted manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benveniste, P (1986) Sterol biosynthesis. In: Briggs, WR, Jones, RL & Walbot, V (Eds) Ann. Rev. Plant Physiol. 37: 275–308, Annual Reviews Inc. Palo Alto, Calif.

    Google Scholar 

  • Best, DJ, Floyd, NC, Magalhaes, A, Burfield, A & Rhodes, PM (1987) Initial steps in the degradation of alpha-pinene by Pseudomonas fluorescens NCIMB 11671. Biocatalysis 1: 147–159

    Google Scholar 

  • Bradshaw, WH, Conrad, HE, Corey, EJ, Gunsalus, IC & Lednicer, D (1959) Microbial degradation of (+)-camphor. J. Amer. Chem. Soc. 81: 5507

    Google Scholar 

  • Cain, RB (1961) The metabolism of protocatechuic acid by a Vibrio. Biochem. J. 79: 298–312

    Google Scholar 

  • Cantwell, GG, Lau, EP, Watts, DS & Fall, RR (1978) Biodegradation of acyclic isoprenoids by Pseudomonas species. J. Bacteriol. 135: 324–333

    Google Scholar 

  • Carman, RM, Macrae, IC & Perkins, MV (1986) The oxidation of 1,8-cineole by Pseudomonas flava. Aust. J. Chem. 39: 1739–1746

    Google Scholar 

  • Chapman, PJ, Meerman, G, Gunsalus, IC, Srinivasan, R & Rinehart, KL (1966) A new acyclic metabolite in camphor oxidation. J. Amer. Chem. Soc. 88: 618–619

    Google Scholar 

  • Conrad, HE, Dubus, R & Gunsalus, IC (1961) An enzyme system for cyclic ketone lactonization. Biochem. Biophys. Res. Commun. 6: 295–297

    Google Scholar 

  • Conrad, HE, Dubdus, R, Namtvedt, MJ & Gunsalus, IC (1965) Mixed function oxidation. II. Separation and properties of the enzymes catalysing camphor lactonization. J. Biol. Chem. 240: 495–503

    Google Scholar 

  • Conrad, HE, Leib, K & Gunsalus, IC (1965) Mixed function oxidation. III. An electron transport complex in camphor lactonization. J. Biol. Chem. 240: 4029–4037

    Google Scholar 

  • Dhavalikar, RS & Bhattacharyya, PK (1966) Microbial transformations of terpenes: Part VII-fermentation of limonene by a soil pseudomonad. Indian J. Biochem. 3: 144–157

    Google Scholar 

  • Dhavalikar, RS, Rangachari, PN & Bhattacharyya, PK (1966) Microbial transformations of terpenes: Part IX-pathways of limonene degradation by a soil pseudomonad. Indian J. Biochem. 3: 158–164

    Google Scholar 

  • Friedemann, T & Haugen, GE (1943) Pyruvic acid II. The determination of ketoacids in blood and urine. J. Biol. Chem. 147: 415–422

    Google Scholar 

  • Gibbon, GH & Pirt, SJ (1971) Degradation of a-pinene by Pseudomonas PX1. FEBS Lett. 18: 103–105

    Google Scholar 

  • Gibbon GH, Millis NF & Pirt SJ (1972) Degradation of a-pinene by bacteria. In: Terui G (Ed) Fermentation Technology Today (pp 609–612). Proceedings of the 4th international fermentation symposium, Osaka, Japan

  • Griffiths, ET, Bociek, SM, Harries, PC, Jeffcoat, R, Sissons, DJ & Trudgill, PW (1987) Bacterial metabolism of a-pinene: Pathway from a-pinene oxide to acyclic metabolites in Nocardia sp. strain P18.3. J. Bacteriol. 169: 4972–4979

    Google Scholar 

  • Griffiths, ET, Harries, PC, Jeffcoat, R & Trudgill, PW (1987) Purification and properties of a-pinene oxide lyase from Nocardia sp. strain P18.3. J. Bacteriol. 169: 4980–4983

    Google Scholar 

  • Gunsalus, IC & Lipscomb, JD (1973) Structure and reactions of a microbal monooxygenase: The role of putidaredoxin. In: Lovenberg, W (Ed) Iron-Sulfur Proteins, Vol 1 (pp 151–171). Academic Press, New York

    Google Scholar 

  • Gunsalus, IC & Marshall, VP (1971) Monoterpene dissimilation: Chemical and genetic models. CRC Crit. Rev. Microbiol. 1: 291–310

    Google Scholar 

  • Gunsalus, IC, Meeks, JR, Lipscomb, JD, Debrunner, P & Munck, E (1974) Bacterial monooxygenases-the P450 cytochrome system. In: Hayaishi, O (Ed) Molecular Mechanisms of Oxygen Activation (pp 559–613). Academic Press, New York

    Google Scholar 

  • Macrae, IC, Alberts, V, Carman, RM & Shaw, IM (1979) Products of 1,8-cineole oxidation by a pseudomonad. Aust. J. Chem. 32: 917–922

    Google Scholar 

  • Nishimura, H, Noma, Y & Mizutani, J (1982) Eucalyptus as biomass. Novel compounds from microbial conversion of 1,8-cineole. Agric. Biol. Chem. 46: 2601–2604

    Google Scholar 

  • Ougham, HJ, Taylor, DG & Trudgill, PW (1983) Camphor revisited: Involvement of a unique monooxygenase in the metabolism of 105–1 acid by Pseudomonas putida. J. Bacteriol. 153: 140–152

    Google Scholar 

  • Rosazza, JPN, Steffens, JJ, Sariaslani, FS, Goswami, A, Beale, JM, Reeg, S & Chapman, R (1987) Microbial hydroxylation of 1,4-cineole. Appl. Environ. Microbiol. 53: 2482–2486

    Google Scholar 

  • Seubert, W (1960) Degradation of isoprenoid compounds by microorganisms. I. Isolation and characterization of an isoprenoid-degrading bacterium, Pseudomonas citronellolis n. sp. J. Bacteriol. 79: 426–434

    Google Scholar 

  • Seubert, W & Fass, E (1964) Untersuchungen uber den bakteriellen Abbau von Isoprenoiden. V. Der Mechanismus des Isoprenoidabbaues. Biochem. Z. 341: 35–44

    Google Scholar 

  • Seubert, W & Remberger, U (1963) Untersuchungen uber den bakteriellen Abbau von Isoprenoiden. II. Die Rolle der Kohlensaure. Biochem. Z. 338: 245–264

    Google Scholar 

  • Seubert, W, Fass, E & Remberger, U (1963) Untersuchungen uber den bakteriellen Abbau von Isoprenoiden. III. Reinigung und Eigenschaften der Gerenylcarboxylase. Biochem. Z. 338: 265–275

    Google Scholar 

  • Shuka, OP & Bhattacharyya, PK (1968) Microbial transformation of terpenes: Part IX-pathways of degradation of a- and β-pinenes in a soil pseudomonad (PL-strain). Indian J. Biochem. 5: 92–101

    Google Scholar 

  • Shukla, OP, Moholay, MN & Bhattacharyya, PK (1968) Microbial transformations terpenes: Part X-Fermentation of a- and β-pinenes by a soil pseudomonad (PL-strain). Indian J. Biochem. 5: 79–91

    Google Scholar 

  • Taylor, DG & Trudgill, PW (1986) Camphor revisited: Studies of 2,5-diketocamphane 1,2-monooxygenase from Pseudomonas putida ATCC 17453. J. Bacteriol. 165: 489–497

    Google Scholar 

  • Trudgill, PW (1984) Microbial degradation of the alicyclic ring. In: Gibson, DT (Ed) Microbial Degradation of Organic Compounds (pp 131–180). Marcel Dekker, New York

    Google Scholar 

  • Trudgill, PW (1986) Terpenoid metabolism by Pseudomonas. In: Sokatch, JR (Ed) The Bacteria, a Treatise on Structure and Function, Vol X (pp 483–525). Academic Press, New York

    Google Scholar 

  • Trudgill, PW, Dubus, R & Gunsalus, IC (1966a) Mixed function oxidation. V. Flavin interaction with a reduced diphosphopyridine nucleotide dehydrogenase, one of the enzymes participating in camphor lactonization. J. Biol. Chem. 241: 1194–1205

    Google Scholar 

  • Trudgill, PW, Dubus, R & Gunsalus, IC (1966b) Mixed function oxidation. VI. Purification of a tightly coupled electron transport complex in camphor lactonization. J. Biol. Chem. 241: 4288–4290

    Google Scholar 

  • Tudroszen, NJ, Kelly, DP & Millis, NF (1977) a-Pinene metabolism by Pseudomonas putida. Biochem. J. 168: 312–318

    Google Scholar 

  • Wallach, O (1895) Zur Constitutionsbestimmung des Terpineols. Chem. Ber. 28: 1755–1777

    Google Scholar 

  • Williams, DR, Trudgill, PW & Taylor, DG (1989) Metabolism of 1,8-cineole by a Rhodococcus species: Ring cleavage reactions. J. Gen. Microbiol. 135: 1957–1967

    Google Scholar 

  • Yphantis, DA (1964) Equilibrium ultracentrifugation of dilute solutions. Biochemistry 3: 297–317

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trudgill, P.W. Microbial metabolism of monoterpenes — recent developments. Biodegradation 1, 93–105 (1990). https://doi.org/10.1007/BF00058829

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00058829

Key words

Navigation