Skip to main content
Log in

The complete mitochondrial DNA sequence of the harbor seal, Phoca vitulina

  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

Summary

The nucleotide sequence of the mitochondrial DNA (mtDNA) of the harbor seal, Phoca vitulina, was determined. The total length of the molecule was 16,826 bp. The organization of the coding regions of the molecule conforms with that of other mammals, but the control region is unusually long. A considerable portion of the control region is made up of short repeats with the motif GTACAC particularly frequent. The two rRNA genes and the 13 peptide-coding genes of the harbor seal, fin whale, cow, human, mouse, and rat were compared and the relationships between the different species assessed. At ordinal level the 12S rRNA gene and 7 out of the 13 peptide-coding genes yielded a congruent topological tree of the mtDNA relationship between the seal, cow, whale, human, and the rodents. In this tree the whale and the cow join first, and this clade is most closely related to the seal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson S, Bankier AT, Barrell BG, de Bruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJH, Staden R, Young IG (1981) Sequence and organization of the human mitochondrial genome. Nature 290:457–465

    Google Scholar 

  • Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, Young IG (1982) Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitochondrial genome. J Mol Biol 156:683–717

    Google Scholar 

  • Arnason U, Gullberg A, Widegren B (1991) The complete nucleotide sequence of the mitochondrial DNA of the fin whale, Balaenoptera physalus. J Mol Evol 33:556–568

    Google Scholar 

  • Attardi G, Chomyn A, Doolittle RF, Mariottini P, Ragan CI (1986) Seven unidentified reading frames of human mitochondrial DNA encode subunits of the respiratory chain NADH dehydrogenase. Cold Spring Harbor Symp Quant Biol LI:103–114

    Google Scholar 

  • Bibb MJ, Van Etten RA, Wright CT, Walberg MW, Clayton DA (1981) Sequence and gene organization of mouse mitochondrial DNA. Cell 26:167–180

    Google Scholar 

  • Biju-Duval C, Ennafaa H, Dennebouy N, Monnerot M, Mignotte F, Soriguer RC, Gaaied AD (1991) Mitochondrial DNA evolution in lagomorphs: origin of systematic heteroplasmy and organization of diversity in European rabbits. J Mol Evol 33:92–102

    Google Scholar 

  • Bulmer M, Wolfe KH, Sharp PM (1991) Synonymous nucleotide substitution rates in mammalian genes: implication for the molecular clock and the relationship of mammalian orders. Proc Natl Acad Sci USA 88:5974–5978

    Google Scholar 

  • Cann RL, Stoneking M, Wilson AC (1987) Mitochondrial DNA and human evolution. Nature 325:31–36

    Google Scholar 

  • Czelusniak J, Goodman M, Koop BF, Tagle DA, Shoshani J, Braunitzer G, Kleinschmidt TK, de Jong WW, Matsuda G (1990) Perspectives from amino acid and nucleotide sequences on cladistic relationships among higher taxa of Eutheria. In: Genoways HH (ed) Current mammalogy, vol 2. Plenum, New York, pp 545–572

    Google Scholar 

  • Deveraux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Felsenstein J (1989) PHYLIP-phylogeny inference package (version 3.4). Cladistics 5:164–166

    Google Scholar 

  • Gadaleta G, Pepe G, De Candia G, Quagliariello C, Sibisa E, Saccone C (1989) The complete nucleotide sequence of the Rattus norvegicus mitochondrial genome: cryptic signals revealed by comparative analysis between vertebrates. J Mol Evol 28:497–516

    Google Scholar 

  • Gribskov M, Burgess RR (1986) Sigma factors from E. coli, B. subtilis, phage SPO1, and phage T4 are homologous proteins. Nucleic Acids Res 14(16):6745–6763

    Google Scholar 

  • Hasegawa M, Kishino H (1989) Heterogeneity of tempo and mode of mitochondrial DNA evolution among mammalian orders. Jpn J Genet 64:243–258

    Google Scholar 

  • Hasegawa M, Kishino H, Hayasaka K, Horai S (1990) Mitochondrial DNA evolution in primates: transition rate has been extremely low in the lemur. J Mol Evol 31:113–121

    Google Scholar 

  • Hayasaka K, Gojobori T, Horai S (1988) Molecular phylogeny and evolution of primate mitochondrial DNA. Mol Biol Evol 5:626–644

    Google Scholar 

  • Hixson JE, Brown WM (1986) A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: sequence, structure, evolution and phylogenetic implications. Mol Biol Evol 3:1–18

    Google Scholar 

  • Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144

    Google Scholar 

  • Kraus F, Miyamoto MM (1991) Rapid cladogenesis among the pecoran ruminants: evidence from mitochondrial DNA sequences. Syst Zool 40:117–130

    Google Scholar 

  • Li W-H, Gouy M, Sharp PM, O'Huigin C, Yang Y-W (1990) Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks. Proc Natl Acad Sci USA 87:6703–6707

    Google Scholar 

  • Mignotte F, Gueride M, Champagne A-M, Mounolou J-C (1990) Direct repeats in the non-coding region of rabbit mitochondrial DNA, involvement in the generation of intra- and interindividual heterogeneity. Eur J Biochem 194:561–571

    Google Scholar 

  • Miyamoto MM, Boyle SM (1989) The potential importance of mitochondrial DNA sequence data to eutherian mammal phylogeny. In: Fernholm B, Bremer B, Jörnvall H (eds) The hierarchy of life. Elsevier, Amsterdam, pp 437–450

    Google Scholar 

  • Miyamoto MM, Kraus F, Ryder OA (1990) Phylogeny and evolution of antlered deer determined from mitochondrial DNA sequences. Proc Natl Acad Sci USA 87:6127–6131

    Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453

    Google Scholar 

  • Ramharack R, Deeley RG (1987) Structure and evolution of primate cytochrome c oxidase subunit II gene. J Biol Chem 262:14014–14021

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    Google Scholar 

  • Sanger F (1981) Determination of nucleotide sequences in DNA. Science 214:1205–1210

    Google Scholar 

  • Simpson GG (1945) The principles of classification and a classification of mammals. Bull Am Mus Nat Hist 85:1–350

    Google Scholar 

  • Smith MF, Patton JL (1991) Variation in mitochondrial cytochrome b sequence in natural populations of South American akodontine rodents (Muridae: Sigmodontinae). Mol Biol Evol 8:85–103

    Google Scholar 

  • Smith TF, Waterman MS (1981) Comparison of biosequences. Adv Appl Math 2:482–489

    Google Scholar 

  • Vigilant L, Stoneking M, Harpending H, Hawkes K, Wilson AC (1991) African populations and the evolution of human mitochondrial DNA. Science 253:1503–1508.

    Google Scholar 

  • Wilson AC, Cann RL, Carr SM, George M, Gyllensten UB, Helm-Bychwski KM, Higuchi RG, Palumbi SR, Prager EM, Sage RD, Stoneking M (1985) Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc 26:375–400

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Offprint requests to: Ú. Árnason

Rights and permissions

Reprints and permissions

About this article

Cite this article

Árnason, Ú., Johnsson, E. The complete mitochondrial DNA sequence of the harbor seal, Phoca vitulina . J Mol Evol 34, 493–505 (1992). https://doi.org/10.1007/BF00160463

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00160463

Key words

Navigation