Skip to main content
Log in

Standardized nomenclature for Alu repeats

  • Articles
  • Published:
Journal of Molecular Evolution Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Batzer MA, Deininger PL (1991) A human-specific subfamily of Alu sequences. Genomics 9:481–487

    Google Scholar 

  • Batzer MA, Kilroy GE, Richard PE, Shaikh TH, Desselle TD, Hoppens CL, Deininger PL (1990) Structure and variability of recently inserted Alu family members. Nucleic Acids Res 18:6793–6798

    Google Scholar 

  • Batzer MA, Gudi VA, Mena JC, Foltz DW, Herrera RJ, Deininger PL (1991) Amplification dynamics of Human-Specific (HS) Alu family members. Nucleic Acids Res 19:3619–3623

    Google Scholar 

  • Batzer MA, Stoneking M, Alegria-Hartman M, Bazan H, Kass DH, Shaikh TH, Novick GE, Ioannou PA, Scheer WD, Herrera RJ, Deininger PL (1994) African origin of human-specific polymorphic Alu insertions. Proc Natl Acad Sci USA 91:12288–12292

    Google Scholar 

  • Batzer MA, Arcot SS, Phinney JW, Alegria-Hartman M, Kass DH, Milligan SM, Kimpton C, Gill P, Hochmeister M, Ioannou PA, Herrera RJ, Boudreau DA, Scheer WD, Keats BJB, Deininger PL, Stoneking M (1996) Genetic variation of recent Alu insertions in human populations. J Mol Evol 42:22–29

    Google Scholar 

  • Batzer MA, Rubin CM, Hellman-Blumberg U, Alegria-Hartman M, Leeflang EP, Stern JD, Bazan HA, Shaikh TH, Deininger PL, Schmid CW (1995) Dispersion and insertion polymorphism in two small subfamilies of recently amplified human Alu repeats. J Mol Biol 247:418–427

    Google Scholar 

  • Blonden LAJ, Terwindt GM, Den Dunnen JT, Van Ommen G-JB (1994) A polymorphic STS in intron 44 of the dystrophin gene. Hum Genet 93:479–480

    Google Scholar 

  • Britten RJ (1994) Evidence that most human Alu sequences were inserted in a process that ceased about 30 million years ago. Proc Natl Acad Sci USA 91:6148–6150

    Google Scholar 

  • Britten RJ, Baron WF, Stout DB, Davidson EH (1988) Sources and evolution of human Alu repeated sequences. Proc Natl Acad Sci USA 85:4770–4774

    Google Scholar 

  • Britten RJ, Stout DB, Davidson EH (1989) The current source of human Alu retroposons is a conserved gene shared with Old World monkey. Proc Natl Acad Sci USA 86:3718–3722

    Google Scholar 

  • Deininger PL (1989) SINEs: short interspersed repeated DNA elements in higher eucaryotes. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington, DC, pp 619–636

    Google Scholar 

  • Deininger PL, Batzer MA (1993) Evolution of retroposons. Evol Biol 27:157–196

    Google Scholar 

  • Deininger PL, Batzer MA (1995) SINE master genes and population biology. In: Maraia RJ (ed) The impact of short interspersed elements (SINEs) on the host genome. RG Landes, Georgetown, TX, pp 43–60

    Google Scholar 

  • Deininger PL, Slagel VK (1988) Recently amplified Alu family members share a common parental Alu sequence. Mol Cell Biol 8:4566–4569

    Google Scholar 

  • Deininger PL, Batzer MA, Hutchison III CA, Edgell MH (1992) Master genes in mammalian repetitive DNA amplification. Trends Genet 8:307–311

    Google Scholar 

  • Hammer MF (1994) A recent insertion of an Alu element on the Y chromosome is a useful marker for human population studies. Mol Biol Evol 11:749–761

    Google Scholar 

  • Hutchinson GB, Andrew SE, McDonald H, Goldberg YP, Graharn R, Rommens JR, Hayden MR (1993) An Alu element retroposition in two families with Huntington disease defines a new active Alu subfamily. Nucleic Acids Res 21:3379–3383

    Google Scholar 

  • Jurka J (1993) A new subfamily of recently retroposed Alu repeats. Nucleic Acids Res 21:2252

    Google Scholar 

  • Jurka J, Milosavljevic A (1991) Reconstruction and analysis of human Alu genes. J Mol Evol 32:105–121

    Google Scholar 

  • Jurka J, Smith T (1988) A fundamental division in the Alu family of repeated sequences. Proc Natl Acad Sci USA 85:4775–4778

    Google Scholar 

  • Kass DH, Aleman C, Batzer MA, Deininger PL (1994) Identification of a human specific Ala insertion in the Factor XIIB gene. Genetica 94:1–8

    Google Scholar 

  • Labuda D, Striker G (1989) Sequence conservation in Alu evolution. Nucleic Acids Res 17:2477–2491

    Google Scholar 

  • Leeflang EP, Liu W-M, Hashimoto C, Choudary PV, Schmid CW (1992) Phylogenetic evidence for multiple Alu source genes. J Mol Evol 35:7–16

    Google Scholar 

  • Matera AG, Hellmann U, Schmid CW (1990a) A transpositionally and transcriptionally competent Alu subfamily. Mol Cell Biol 10:5424–5432

    Google Scholar 

  • Matera AG, Hellmann U, Hintz MF, Schmid CW (1990b) Recently transposed Alu repeats result from multiple source genes. Nucleic Acids Res 18:6019–6023

    Google Scholar 

  • Muratani K, Hada T, Yamamoto Y, Kaneko T, Shigeto Y, Ohue T, Furuyama J, Higashino K (1991) Inactivation of the cholinesterase gene by Alu insertion: possible mechanism for human gene transposition. Proc Natl Acad Sci USA 88:1315–11319

    Google Scholar 

  • Okada N (1991) SINEs. Curr Opin Genet Dev 1:498–504.

    Google Scholar 

  • Perna NT, Batzer MA, Deininger PL, Stoneking M (1992) Alu insertion polymorphism: A new type of marker for human population studies. Hum Biol 64:641–648

    Google Scholar 

  • Quentin Y (1988) The Alu family developed through successive waves of fixation closely connected with primate lineage history. J Mol Evol 27:194–202

    Google Scholar 

  • Rogers J (1983) Retroposons defined. Nature 301:460

    Google Scholar 

  • Schmid CW, Maraia R (1992) Transcriptional regulation and transpositional selection of active SINE sequences. Curr Opin Genet Dev 2:874–882.

    Google Scholar 

  • Shen M-R, Batzer MA, Deininger PL (1991) Evolution of the master Alu gene(s). J Mol Evol 33:311–320

    Google Scholar 

  • Slagel V, Flemington E, Traina-Dorge V, Bradshaw H, Deininger PL (1987) Clustering and sub-family relationships of the Alu family in the human genome. Mol Biol Evol 14:19–29

    Google Scholar 

  • Stoppa-Lynnet D, Carter PE, Meo T, Tosi M (1990) Clusters of intragenic Alu repeats predispose the human C1 inhibitor locus to deleterious rearrangements. Proc Natl Acad Sci USA 87:1551–1555

    Google Scholar 

  • Ullu E, Murphy S, Melli M (1982) Human 7S RNA consists of a 140 nucleotide middle repetitive sequence inserted in an Alu sequence. Cell 29:195–202

    Google Scholar 

  • Vidaud D, Vidaud M, Bahnak BR, Siguret V, Sanchez SG, Laurin Y, Meyer D, Goossens M, Lavergne JM (1993) Hemophilia B due to a de novo insertion of a Human-Specific Alu subfamily member within the coding region of the factor IX gene. Eur J Hum Genet 1:30–36

    Google Scholar 

  • Wallace MR, Andersen LB, Sauhno AM, Gregory PE, Glover TW, Collins FS (1991) A de novo Alu insertion results in neurofibromatosis type 1. Nature 353:864–866

    Google Scholar 

  • Willard C, Nguyen HT, Schmid CW (1987) Existence of at least three distinct Alu subfamilies. J Mol Evol 26:180–186

    Google Scholar 

  • Zietkiewicz E, Richer C, Makalowski W, Jurka J, Labuda D (1994) A young Alu subfamily amplified independently in human and African great apes lineages. Nucleic Acids Res 22:5608–5612

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: M.A. Batzer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batzer, M.A., Deininger, P.L., Hellmann-Blumberg, U. et al. Standardized nomenclature for Alu repeats. J Mol Evol 42, 3–6 (1996). https://doi.org/10.1007/BF00163204

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00163204

Keywords

Navigation