Skip to main content
Log in

Optimization of glucose oxidase production by Aspergillus niger using genetic-and process-engineering techniques

  • Original Paper
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Wild-type Aspergillus niger NRRL-3 was transformed with multiple copies of the glucose oxidase structural gene (god). The gene was placed under the control of the gpd A promoter of A. nidulans. For more efficient secretion the α-amylase signal peptide from A oryzae was inserted in front of god. Compared to the wild type, the recombinant strain NRRL-3 (GOD3-18) produced up to four times more extracellular glucose oxidase under identical culture conditions. Addition of yeast extract (2 g l−1) to a mineral salts medium containing only glucose as carbon source increased volumetric and specific extracellular glucose oxidase activities by 130% and 50% respectively. With the same medium composition and inoculum size, volumetric and specific extracellular glucose oxidase activities increased more than ten times in bioreactor cultivations compared to shake-flask cultures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bellgardt K-H, Gäbel T, Gollmer K, Liehr E, Nothnagel J, Posten C, Schulze W (1992) Ubicon — ein dezentrales Prozeßleitsystem für die Biotechnologie. Bioengineering 8: 27–33

    Google Scholar 

  • Dijken JP van, Veenhuis M (1980) Cytochemical localization of glucose oxidase in peroxisomes of Aspergillus niger. Eur J Appl Microbiol Biotechnol 9: 275–283

    Google Scholar 

  • Fiedurek J, Rogalski J, Ilczuk Z, Leonowicz A (1986) Screening and mutagenesis of moulds for the improvement of glucose oxidase production. Enzyme Microb Technol 8: 734–736

    Google Scholar 

  • Finkelstein DB (1987) Improvement of enzyme production in Aspergillus. Anntonie Van Leeuvenhoek 53: 349–352

    Google Scholar 

  • Hondel CAMJJ van den, Punt PJ, Gorcom RFM van (1992) Production of extracellular proteins by the filamentous fungus Aspergillus. Antonie Van Leeuvenhoek 61: 153–160

    Google Scholar 

  • Jeenes DJ, MacKenzie DA, Roberts IN, Archer DB (1991) Heterologous protein production by filamentous fungi. Biotechnol Genet Eng Rev 9: 327–367

    Google Scholar 

  • Kargi F, Moo-Young M (1985) Transport phenomena in bio-processes. In: Moo-Young M, Cooney CL, Humphrey AE (eds) Comprehensive biotechnology, vol. 2. Pergamon, Oxford New York Toronto, pp 5–56

    Google Scholar 

  • Kriechbaum M, Heilmann HJ, Wientjes FJ, Hahn M, Jany K-D, Gassen H-G, Sharif F, Alaeddinoglu G (1989) Cloning and DNA sequence analysis of the glucose oxidase gene from Aspergillus niger NRRL-3. FEBS Lett 255: 63–66

    Google Scholar 

  • MacKenzie DA, Jeenes DJ, Belshaw NJ, Archer DB (1993) Regulation of secreted protein production by filamentous fungi: recent developments and perspectives. J Gen Microbiol 139: 2295–2307

    Google Scholar 

  • Markwell J, Frakes LG, Brott EC, Osterman J, Wagner FW (1989) Aspergillus niger mutants with increased glucose oxidase production. Appl Microbiol Biotechnol 30: 166–169

    Google Scholar 

  • Michal G, Möllering M, Siedel J (1983) Redox reactions with hydrogen peroxide as intermediate. In: Bergmeyer HU, Bergmeyer J, Graßl M (eds), Methods of enzymatic analysis. Verlag Chemie, Weinheim, Deerfield Beach Fla, pp 210–232

    Google Scholar 

  • Mischak H, Kubicek CP, Röhr M (1985) Formation and location of glucose oxidase in citric acid producing mycelia of Aspergillus niger. Appl Microbiol Biotechnol 21: 27–31

    Google Scholar 

  • Müller H-M (1985) Utilization of gluconate by Aspergillus niger. I. Enzymes of phosphorylating and nonphosphorylating pathways. Zentralbl Mikrobiol 140: 475–484

    Google Scholar 

  • Müller H-M (1986) Utilization of gluconate by Aspergillus niger. II. Enzymes of degradation pathways and main end products. Zentralbl Mikrobiol 141: 461–469

    Google Scholar 

  • Peberdy JF (1994) Protein secretion in filamentous fungi — trying to understand a highly productive black box. Trends Biotechnol 12: 50–57

    Google Scholar 

  • Punt PJ, Oliver RP, Dingemanse MA, Pouwels PH, Hondel CAMJJ van den (1987) Transformation of Aspergillus based on the hygromycin B resistance marker from Escherichia coli. Gene 56: 117–124

    Google Scholar 

  • Punt PJ, Dingemanse MA, Kuyvenhoven A, Soede RDM, Pouwels PH, Hondel CAMJJ van den (1990) Functional elements in the promoter region of the Aspergillus nidulans gpdA gene encoding glyceraldehyde-3-phosphate dehydrogenase. Gene 93: 101–109

    Google Scholar 

  • Punt PJ, Zegers ND, Busscher M, Powels PH, Hondel CAMJJ van den (1991) Intracellular and extracellular production of proteins in Aspergillus under the control of expression signals of the highly expressed Aspergillus nidulans gpdA gene. J Biotechnol 17: 19–34

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY

    Google Scholar 

  • Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Wayne Davies R (1983) Transformation by integration in Aspergillus nidulans. Gene 26: 205–221

    Google Scholar 

  • Traeger M, Qazi GN, Onken U, Chopra CL (1991) Contribution of endo- and exocellular glucose oxidase to gluconic acid production at increased dissolved oxygen concentrations. J Chem Technol Biotechnol 50: 1–11

    Google Scholar 

  • Urmann U, Krämer T, Enz R, Khanh NQ, Ruttkowski E (1992) Construction of an expression vector with the regulatory elements of the α-amylase gene from Aspergillus oryzae DSM63303. In: Kreysa G, Driesel AJ (eds), DECHEMA Biotechnology Conferences, V Vol. 5 Part B, VCH DECHEMA Deutsche Gesellschaft für Chemisches Apparatewesen, Chemische Technik und Biotechnologie e. V., Frankfurt am Main, FRG, pp 771–775

    Google Scholar 

  • Wirsel S, Lachmund A, Wildhardt G, Ruttkowski E (1989) Three α-amylase genes of Aspergillus oryzae exhibit identical intronexon organization. Mol Microbiol 3: 3–14

    Google Scholar 

  • Witteveen CFB, Vondervoort P van de, Swart K, Visser J (1990) Glucose oxidase overproducing and negative mutants of Aspergillus niger. Appl Microbiol Biotechnol 33: 683–686

    Google Scholar 

  • Witteveen CFB, Veenhuis M, Visser J (1992) Localization of glucose oxidase and catalase activities in Aspergillus niger. Appl Environ Microbiol 58: 1190–1194

    Google Scholar 

  • Witteveen CFB, Vondervoort PJI van de, Broeck HC van den, Engelenburg FAC van, Graaff LH de, Hillebrand MHBC, Schaap PJ, Visser J (1993) Induction of glucose oxidase, catalase, and lactonase in Aspergillus niger. Curr Genet 24: 408–416

    Google Scholar 

  • Zetelaki KZ (1970) The role of aeration and agitation in the production of glucose oxidase in submerged culture. II. Biotechnol Bioeng 12: 379–397

    Google Scholar 

  • Zetelaki K, Vas K (1968) The role of aeration and agitation in the production of glucose oxidase in submerged culture. Biotechnol Bioeng 10: 45–59

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellmuth, K., Pluschkell, S., Jung, JK. et al. Optimization of glucose oxidase production by Aspergillus niger using genetic-and process-engineering techniques. Appl Microbiol Biotechnol 43, 978–984 (1995). https://doi.org/10.1007/BF00166912

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00166912

Keywords

Navigation