Skip to main content
Log in

Keratin and vimentin expression in early organogenesis of the rabbit embryo

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

The expression of vimentin and keratins is analysed in the early postimplantation embryo of the rabbit at 11 days post conceptionem (d.p.c.) using a panel of monoclonal antibodies specific for single intermediate filament polypeptides (keratins 7, 8, 18, 19 and vimentin) and a “pan-epithelial” monoclonal keratin antibody. Electrophoretic separation of cytoskeletal preparations obtained from embryonic tissues, in combination with immunoblotting of the resulting polypeptide bands, demonstrates the presence of the rabbit equivalents of human keratins 8, 18, and vimentin in 11-day-old rabbit embryonic tissues. Immunohistochemical staining shows that several embryonic epithelia such as notochord, surface ectoderm, primitive intestinal tube, and mesonephric duct, express keratins, while others (neural tube, dermomyotome) express vimentin, and a third group (coelomic epithelia) can express both. Similarly, of the mesenchymal tissues sclerotomal mesenchyme expresses vimentin, while somatopleuric mesenchyme (abdominal wall) expresses keratins, and splanchnopleuric mesenchyme (dorsal mesentery) expresses both keratins and vimentin. While these results are in accordance with most results of keratin and vimentin expression in embryos of other species, they stand against the common concept of keratin and vimentin specificity in adult vertebrate tissues. Furthermore, keratin and vimentin are not expressed in accordance with germ layer origin of tissues in the mammalian embryo; rather the expression of these proteins seems to be related to cellular function during embryonic development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Hasani S (1980) In-vitro Befruchtungsversuche mit präovulatorischen Kanincheneizellen. Dissertation, Universität Hannover

  • Broers JLV, Carney DN, Klein Rot M, Schaart G, Lane EB, Vooijs GP, Ramaekers FCS (1986) Intermediate filament proteins in classic and variant types of small cell lung carcinoma cell lines: a biochemical and immunochemical analysis using a panel of monoclonal and polyclonal antibodies. J Cell Sci 83:37–60

    Google Scholar 

  • Byskov AG (1986) Differentiation of the mammalian embryonic gonad. Physiol Rev 66:71–117

    Google Scholar 

  • Danto SI, Fishmann DA (1984) Immunocytochemical analysis of intermediate filaments in embryonic heart cells with monoclonal antibodies to desmin. J Cell Biol 98:2179–2191

    Google Scholar 

  • Ede DA, El-Gadi AOA (1986) Genetic modifications of developmental acts in chick and mouse somite development. In: Bellairs R, Ede DA, Lash JW (eds) Somites in developing embryos. Plenum, New York, p 209–224

    Google Scholar 

  • Erickson CA, Tucker RP, Edwards BF (1987) Changes in the distribution of intermediate-filament types in Japanese quail embryos during morphogenesis. Differentiation 34:88–97

    Google Scholar 

  • Gruenwald P (1942) Common traits in development and structure of the organs originating from the coelomic wall. J Morphol 70:353–387

    Google Scholar 

  • Heukeshoven J, Dernick R (1985) Simplified method for silver staining of proteins in polyacrylamide gels and mechanism of silver staining. Electrophoresis 5:103–112

    Google Scholar 

  • Holthöfer H, Miettinen A, Lehto VP, Lehtonen E, Virtanen I (1984) Expression of vimentin and cytokeratin types of intermediate filament proteins in developing and adult human kidneys. Lab Invest 50:552–559

    CAS  PubMed  Google Scholar 

  • Holtzer H, Marshall JM Jr, Finck H (1957) An analysis of myogenesis by the use of fluorescent antimyosin. J Biophys Biochem Cytol 3:705–724

    Google Scholar 

  • Jackson BW, Grund C, Winter S, Franke WW, Illmensee K (1981) Formation of cytoskeletal elements during mouse embryogenesis. II. Epithelial differentiation and intermediate-sized filaments in early postimplantation embryos. Differentiation 20:203–216

    Google Scholar 

  • Kemler R, Brulet P, Schnebelen MT, Gaillard J, Jacob F (1981) Reactivity of monoclonal antibodies against intermediate filament proteins during embryonic development. J Embryol Exp Morphol 64:45–60

    Google Scholar 

  • Keynes RJ, Stern CD (1984) Segmentation in the vertebrate nervous system. Nature 310:786–789

    CAS  PubMed  Google Scholar 

  • Kyhse-Andersen I (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209

    Article  CAS  PubMed  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lane EB (1982) Monoclonal antibodies provide specific intramolecular markers for the study of epithelial tonofilament organization. J Cell Biol 92:665–673

    Google Scholar 

  • Lane EB, Hogan BLM, Kurkinen M, Garrels JI (1983) Co-expression of vimentin and cytokeratins in parietal endoderm cells of early mouse embryo. Nature 303:701–704

    Google Scholar 

  • Lane EB, Bartek J, Purkis PE, Leigh IM (1985) Keratin antigens in differentiating systems. Ann N Y Acad Sci 455:241–258

    Google Scholar 

  • Lehtonen E, Virtanen I, Saxén L (1985) Reorganization of the intermediate filament cytoskeleton in induced metanephric mesenchyme is independent of tubule morphogenesis. Dev Biol 108:481–490

    Google Scholar 

  • Levitt P, Cooper ML, Rakic P (1983) Early divergence and changing proportions of neuronal and glial precursor cells in the primate cerebral ventricular zone. Dev Biol 96:472–484

    Google Scholar 

  • Matsudaira PT, Burgess DR (1978) SDS microslab linear gradient polyacrylamid gel electrophoresis. Anal Biochem 87:386–396

    Google Scholar 

  • Mestres P, Hinrichsen K (1976) Zur Histogenese des Somiten beim Hühnchen. J Embryol Exp Morphol 36:669–683

    PubMed  Google Scholar 

  • Miki A, Mizoguti H (1982) Acetylcholinesterase activity in the myotome of the early chick embryo. Cell Tissue Res 227:23–40

    CAS  PubMed  Google Scholar 

  • Minot CS, Taylor E (1905) Normal plates of the development of the rabbit (Lepus cuniculus L.). In: Keibel F (ed) Normentafeln zur Entwicklungsgeschichte der Wirbelthiere. Fischer, Jena, Fünftes Heft

    Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982a) The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24

    Article  CAS  PubMed  Google Scholar 

  • Moll R, Franke WW, Volc-Platzer B, Krepler B (1982b) Different keratin polypeptides in epidermis and other epithelia of human skin: a specific cytokeratin of molecular weight 46000 in epithelia of the pilosebaceous tract and basal cell epitheliomas. J Cell Biol 95:285–295

    Google Scholar 

  • Osborn M, Debus E, Weber K (1984) Monoclonal antibodies specific for vimentin. Eur J Cell Biol 34:137–146

    Google Scholar 

  • Page M (1988) Changing patterns of cytokeratin and vimentin in the early chick embryo. Development (in press)

  • Paranko J, Virtanen I (1986) Epithelial and mesenchymal cell differentiation in the fetal rat genital ducts: changes in the expression of cytokeratin and vimentin type of intermediate filaments and desmosomal plaque proteins. Dev Biol 117:135–145

    Google Scholar 

  • Paranko J, Kallajoki M, Pelliniemi LJ, Lehto VP, Virtanen I (1986) Transient coexpression of cytokeratin and vimentin in differentiating rat Sertoli cells. Dev Biol 117:35–44

    Google Scholar 

  • Paulin D, Babinet C, Weber K, Osborn M (1980) Antibodies as probes of cellular differentiation and cytoskeletal organization in the mouse blastocyst. Exp Cell Res 130:297–304

    Google Scholar 

  • Quinlan RA, Schiller DL, Hatzfeld M, Achtstätter T, Moll R, Jorcano JL, Magin TM, Franke WW (1985) Patterns of expression and organization of cytokeratin intermediate filaments. Ann N Y Acad Sci 455:282–306

    Google Scholar 

  • Ramaekers F, Huijsmans A, Moesker O, Kant A, Jap P, Herman C, Vooijs P (1983) Monoclonal antibody to keratin filaments specific for glandular epithelia and their tumors: use in surgical pathology. Lab Invest 49:353–361

    Google Scholar 

  • Ramaekers FCS, Huijsmans A, Schaart G, Moesker O, Vooijs P (1987) Tissue distribution of keratin 7 as monitored by a monoclonal antibody. Exp Cell Res 170:235–249

    CAS  PubMed  Google Scholar 

  • Regauer S, Franke WW, Virtanen I (1985) Intermediate filament cytoskeleton of amnion epithelium and cultured amnion epithelial cells: expression of epidermal cytokeratins in cells of a simple epithelium. J Cell Biol 100:997–1009

    Google Scholar 

  • Schermer A, Galvin S, Sun TT (1986) Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 103:49–62

    Google Scholar 

  • Schmid E, Tapscott S, Bennett GS, Croop JK, Fellini SA, Holtzer H, Franke WW (1979) Differential location of different types of intermediate-sized filaments in various tissues of the chicken embryo. Differentiation 15:27–40

    Google Scholar 

  • Solursh, M, Meier S (1986) The distribution of somite-derived myogenic cells during early development in the wing bud. In: Bellairs R, Ede DA, Lash JW (eds) Somites in developing embryos. Plenum, New York, p 261–275

    Google Scholar 

  • Steinert PM, Steven AC, Roop DR (1985) The molecular biology of intermediate filaments. Cell 42:411–419

    Google Scholar 

  • Tapscott SJ, Bennett GS, Toyama Y, Kleinbart F, Holtzer H (1981) Intermediate filament proteins in the developing chick spinal cord. Dev Biol 86:40–54

    Google Scholar 

  • Tennyson VM, Brzin M, Slotwiner P (1971) The appearance of acetylcholinesterase in the myotome of the embryonic rabbit. An electron microscope cytochemical and biochemical study. J Cell Biol 51:703–721

    Google Scholar 

  • Torrey TW (1954) The early development of the human nephros. Contrib Embryol Carnegie Inst 35:175–198

    Google Scholar 

  • Van Muijen GNP, Ruiter DJ, Warnaar SO (1987) Coexpression of intermediate filament polypeptides in human fetal and adult tissues. Lab Invest 57:359–369

    Google Scholar 

  • Viebahn C, Lane EB, Ramaekers FCS (1987) The mesonephric (Wolffian) and paramesonephric (Müllerian) ducts of golden hamsters express different intermediate-filament proteins during development. Differentiation 34:175–188

    Google Scholar 

  • Wachtler F, Christ B, Jacob HJ (1982) Grafting experiments on determination and migratory behaviour of presomitic, somitic and somatopleural cells in avian embryos. Anat Embryol 164:369–378

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Deutsche Forschungsgemeinschaft and by the Netherlands Cancer Foundation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viebahn, C., Lane, E.B. & Ramaekers, F.C.S. Keratin and vimentin expression in early organogenesis of the rabbit embryo. Cell Tissue Res. 253, 553–562 (1988). https://doi.org/10.1007/BF00219746

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00219746

Key words

Navigation