Skip to main content
Log in

Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

It has become increasingly clear that a stroke lesion usually consists of a densely ischemic focus and of perifocal areas with better upheld flow rates. At least in rats and cats, some of these perifocal (“penumbral”) areas subsequently become recruited in the infarction process. The mechanisms may involve an aberrant cellular calcium metabolism and enhanced production of free radicals. In general, though, the metabolic perturbation in the penumbra requires better characterization. The objective of this article was to define flow distribution in a rat model of reversible middle cerebral artery (MCA) occlusion, so as to allow delineation of the metabolic aberrations responsible for the subsequent infarction. We modified the intraluminal filament occlusion model recently developed by Koizumi et al. (1986), and described in more detail by Nagasawa and Kogure (1989), adopting it for use in both spontaneously breathing and artificially ventilated rats. Successful occlusion of the MCA (achieved in about 9/10 rats) was judged by unilateral EEG depression in ventilated rats, and neurological deficits, such as circling, in spontaneously breathing ones. CBF in the ipsilateral hemisphere was reduced to nearly constant values after 20, 60, and 120 min of occlusion, flow rates in the focus being about 10% and in the perifocal ipsilateral areas about 15–20% of control (contralateral side). When the filament was left in place (permanent occlusion) 2,3,5-triphenyl tetrazolium chloride (TTC) staining and histopathology after 24 h showed a massive infarct on the occluded side, extending from caudoputamen and overlaying cortex to the occipital striate cortex. Animals recirculated after 60 min of MCA occlusion, and allowed to survive 7 days for histopathology, showed infarction of the caudoputamen (lateral part or whole nucleus) in 5/6 animals and selective neuronal necrosis in one animal. The neocortex showed either infarcts, selective neuronal necrosis, or no damage. There was some overlap between neocortical areas which were infarcted and those which were salvaged by reperfusion. In general, though, both the CBF data and the recovery studies with a histopathological endpoint define large parts of the neocortex as perifocal (penumbral) areas which lend themselves to studies of metabolic events leading to infarction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul-Rahman A, Agardh CD, Siesjö BK (1980) Local cerebral blood flow in the rat during severe hypoglycemia, and in the recovery period following glucose injection. Acta Physiol Scand 109:307–314

    Google Scholar 

  • Astrup J, Siesjö BK, Symon L (1981) Thresholds in cerebral ischemia: the ischemic penumbra. Stroke 12:723–725

    Google Scholar 

  • Astrup J, Symon L, Branston NM, Lassen NA (1977) Cortical evoked potential and extracellular K+ and H+ at critical levels of brain ischemia. Stroke 8:51–57

    Google Scholar 

  • Auer RN, Kalimo H, Olsson Y, Siesjö BK (1985) The temporal evolution of hypoglycmie brain damage. II. Light-and electronmicroscopic findings in the hippocampal gyrus and subiculum of the rat. Acta Neuropathol 67:25–36

    Google Scholar 

  • Bannister CM, Chapman SA (1984) Ischemia and revascularization of the middle cerebral territory of the rat brain by manipulation of the blood vessels in the neck. Surg Neurol 21:351–357

    Google Scholar 

  • Bederson JB, Pitts LH, Tsuji M, Nishimura MC, Davis RL Bartkowski H (1986a) Rat middle cerebral artery occlusion: evaluation of the model and developement of a neurologic examination. Stroke 17:472–476

    Google Scholar 

  • Bederson JB, Pitts LH, Germano SM, Nishimura MC, Davis RL, Bartkowski HM (1986b) Evaluation of 2,3,5-triphenyltetrazolium chloride as a stain for detection and quantification of experimental cerebral infarction in rats. Stroke 17:1304–1308

    Google Scholar 

  • Branston NM, Symon L, Crockard A, Pasztor H (1974) Relationship between the cortical evoked potential and local cortical blood flow following acute middle cerebral artery occlusion in the baboon. Exp Neurol 45:195–208

    Google Scholar 

  • Branston NM, Strong AJ, Symon L (1977) Extracellular potassium activity, evoked potential and tissue blood flow. J Neurosurg Sci 32:305–321

    Google Scholar 

  • Carter CJ, Benavides J, Legendre P, Vincent JD, Noel F, Thuret F, Lloyd KG, Arbilla S, Zivkovic B, MacKenzie ET, Scatton B, Langer SZ (1988) Ifenprodil and SL 82.0715 as cerebral antiischemic agents. II. Evidence for N-methyl-D-aspartate receptor antagonist properties. J Pharmacol Exp Therap 247:1222–1232

    Google Scholar 

  • DeGirolami U, Crowell RM, Marcoux FW (1984) Selective necrosis and total necrosis in focal cerebral ischemia. Neuropathologic observations on experimental middle cerebral artery occlusion in the macaque monkey. J Neuropath Exp Neurol 43:57–71

    Google Scholar 

  • Eklöf B, Siesjö BK (1973) Cerebral blood flow in ischemia caused by carotid artery ligation in the rat. Acta Physiol Scand 87:69–77

    Google Scholar 

  • Gotoh O, Mohamed AA, McCulloch J, Graham DI, Harper AM, Teasdale GM (1986) Nimodipine and the haemodynamic and histopathological consequences of middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 6:321–331

    Google Scholar 

  • Hakim AM (1987) The cerebral ischemic penumbra. Can J Neurol Sci 14:557–559

    Google Scholar 

  • Ingvar M, Siesjö BK (1983) Local blood flow and glucose consumption in the rat brain during sustained bicuculline-induceed seizures. Acta Neurol Scand 68:129–144

    Google Scholar 

  • Jacewicz M, Tanabe J, Wang X, Pulsinelli W (1990) Blood flow in the borderzone of focal cerebral infarcts in rats. Soc Neurosci Abstr 16:1278

    Google Scholar 

  • Jones TH, Morawetz RB, Crowell RM, Marcoux FW, FitzGibbon SJ, DeGirolami U, Ojemann RG (1981) Thresholds of focal cerebral ischemia in awake monkeys. J Neurosurg 54:773–782

    Google Scholar 

  • Koizumi J, Yoshida Y, Nakazawa T, Ooneda G (1986) Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn J Stroke 8:1–8

    Google Scholar 

  • Liszczak TM, Hedley-White ET, Adams JF, Han DH, Kolluri VS, Vacanti FX, Heros RC, Zervas NT (1984) Limitations of tetrazolium salts in delinating infarcted brain. Acta Neuropathol 65:150–157

    Google Scholar 

  • Liu TH, Beckman JS, Freeman BA, Hogan EL, Hsu CY (1989) Polyethylene glycol-conjugated Superoxide dismutase and catalase reduce ischemic brain injury. Am J Physiol 256:H589-H593

    Google Scholar 

  • Longa EZ, Weinstein PR, Carlson S, Cummins R (1989) Reversible middle cerebral artery occlusion without craniotomy in rats. Stroke 20:84–91

    Google Scholar 

  • Marcoux FW, Morawetz RB, Crowell RM, DeGirolami U, Halsey JH (1982) Differential regional vulnerability in transient focal cerebral ischemia. Stroke 13:339–346

    Google Scholar 

  • Martz D, Rayos G, Schielke GP, Betz AL (1989) Allopurinol and dimethylthiourea reduce brain infarction following middle cerebral artery occlusion in the rat. Stroke 20:488–494

    Google Scholar 

  • Meldrum B, Salthwaite J (1990) Excitatory amino acid and neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 11:379–387

    Google Scholar 

  • Mohamed AA, Gotoh O, Graham DI, Osborne KA, McCulloch J, Mendelow AD, Teasdale GM, Harper AM (1985) Effect of pretreatment with the calcium antagonist nimodipine on local cerebral blood flow and histopathology after middle cerebral artery occlusion. Ann Neurol 18:705–711

    Google Scholar 

  • Nagasawa H, Kogure K (1989) Correlation between cerebral blood flow and histologic changes in a new rat model of middle cerebral artery occlusion. Stroke 20:1037–1043

    Google Scholar 

  • Nakayama H, Ginsberg MD, Dietrich WD (1988) (S)-emopamil, a novel calcium channel blocker and serotonin S2 antagonist, markedly reduces infarct size following middle cerebral artery occlusion in the rat. Neurology 38:1667–1673

    Google Scholar 

  • Nedergaard M (1987) Transient focal ischemia in hyperglycomie rats is associated with increased cerebral infarction. Brain Res 408:79–85

    Google Scholar 

  • Nedergaard M, Astrup J (1986) Infarct rim: Effect of hyperglycemia on direct current potential and [14C]2-deoxyglucose phosphorylation. J Cereb Blood Flow Metab 6:607–615

    Google Scholar 

  • Nedergaard M, Vorstrup S, Astrup J (1986) Cell density in the border zone around old small human brain infarcts. Stroke 17:1129–1137

    Google Scholar 

  • Osborne KA, Shigeno T, Balarsky A, Ford I, McCulloch J, Teasdale GM (1987) Quantitative assesment of early brain damage in a rat model of focal brain iachemia. J Neurol Neurosurg Psychiat 50:402–410

    Google Scholar 

  • Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988) Focal cerebral ischaemia in the cat: treatment with the glutamate antagonist MK-801 after induction of ischaemia. J Cereb Blood Flow Metab 8:757–762

    Google Scholar 

  • Park CK, Nehls DG, Graham DI, Teasdale GM, McCulloch J (1988) The glutamate antagonist MK-801 reduces focal ischemic brain damage in the rat. Ann Neurol 24:543–551

    Google Scholar 

  • Paxinos G, Watson C (1982) The rat brain in stereotaxic coordinates. Academic Press, New York

    Google Scholar 

  • Sakurada O, Kennedy C, Jehle J, Brown JD, Carbin GL, Sokoloff L (1978) Measurement of local cerebral blood flow with iode-14C-antypyrine. Am J Physiol 234:H59–66

    Google Scholar 

  • Sauter A, Rudin M (1989) Treatment of hypertension with is-radipine reduces infarct size following stroke in laboratory animals. Am J Med. 86:130–133

    Google Scholar 

  • Shigeno T, Teasdale GM, McCulloch J, Graham DI (1985) Recirculation model following MCA occlusion in rats: cerebral blood flow, cerebrovascular permeability, and brain edema. J Neurosurg 63:272–277

    Google Scholar 

  • Siesjö BK, Memezawa H (1991) The ischemic penumbra: fact or fiction? In: Thrombolytic therapy in acute ischemic stroke. Hacke et al. (eds) Springer, Berlin, pp 60–66

    Google Scholar 

  • Siesjö BK, Bengtsson F, Grampp W, Theander S (1989) Calcium, excitotoxins, and neuronal death in the brain. NY Acad Sci 568:234–251

    Google Scholar 

  • Siesjö BK, Fieschi C, Olsen J (1991) Effect of calcium entry blockers in brain disease. IUPHAR document (in press)

  • Strong AJ, Venables GS, Gibson G (1983) The cortical ischaemic penumbra associated with occlusion of the middle cerebral artery in the cat. 1. Topography of changes in blood flow, potassium ion activity, and EEG. J Cereb Blood Mow Metab 3:86–96

    Google Scholar 

  • Sundt Jr TM, Grant WC, Garcia JH (1969) Restoration of middle cerebral artery flow in experimental infarction. J Neurosurg 31:311–322

    Google Scholar 

  • Symon L (1980) The relationship between CBF, evoked potentials and the clinical features in cerebral ischemia. Acta Neurol Scand 62:175–190

    Google Scholar 

  • Symon L, Pasztor E, Branston NM (1974) The distribution and density of reduced cerebral blood flow following acute middle cerebral artery occlusion: an experimental study by the technique of hydrogen clearance in baboons. Stroke 5:355–364

    Google Scholar 

  • Tamura A, Graham DI, McCulloch J, Teasdale GM (1981a) Focal cerebral ischemia in the rat. 1. Description of technique and early neuropathological consequences following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:53–60

    Google Scholar 

  • Tamura A, Graham DI, McCulloch J, Teasdale GM (1981b) Focal cerebral ischemia in the rat: 2. Regional cerebral blood flow determined by 14C-iodeantypyrine autoradiography following middle cerebral artery occlusion. J Cereb Blood Flow Metab 1:61–69

    Google Scholar 

  • Tyson GW, Teasdale GM, Graham DI, McCulloch J (1984) Focal cerebral ischemia in the rat: Topography of hemodynamic and histopathological changes. Ann Neurol 15:559–567

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Memezawa, H., Minamisawa, H., Smith, M.L. et al. Ischemic penumbra in a model of reversible middle cerebral artery occlusion in the rat. Exp Brain Res 89, 67–78 (1992). https://doi.org/10.1007/BF00229002

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00229002

Key words

Navigation