Skip to main content
Log in

Transgenic poplars: expression of chimeric genes using four different constructs

  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Summary

Leaf or stem explants of a hybrid poplar clone (Populus tremula X Populus alba), sensitive to Agrobacterium tumefaciens, were co-cultivated either by an octopine or a nopaline disarmed A. tumefaciens modified strain. Transformed poplar shoots were readily regenerated from explants. The protocol was improved using the nopaline disarmed strain C58/pMP90 with the binary vector pBI121. This protocol was then used to test three other vectors. The first one, possessing a nptII gene fused to the CaMV 19S promoter, permitted regeneration of transformed shoots in presence of 50 to 100 mg/l kanamycin. The two other vectors carried an additional nptII gene under the control of the CaMV 35S or CaMV 35S promoter with a double enhancer sequence (CaMV 70). CaMV 70 promoter provided consistently higher level of gene expression than the other promoters in both callus and leaf tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CaMV:

Cauliflower Mosaïc Virus

2iP:

2-isopentenyladenine

GUS and gus :

ß-glucuronidase

NAA:

1-naphthaleneacetic acid

NPTII and nptII :

neomycin phosphotransferase II

NOS:

Nopaline synthase, X-Gluc: 5-bromo-4-chloro-3-indolyl ß-D glucuronide

Ap:

ampicillin

Gn:

gentamycin

Km:

kanamycin

Rf:

rifampicin

St:

streptomycin

References

  • Ahuja MR (1987) In: Hanover JW and Keathley DE (eds) Genetic Manipulation of Woody Plant. Plenum Press, New York, pp 25–41

    Google Scholar 

  • Beck E, Ludwig G, Auerswald EA, Reiss B, Schaller H (1982) Gene 19: 327–336

    Google Scholar 

  • Bradford MM (1976) Anal Biochem 72: 248–254

    Article  CAS  PubMed  Google Scholar 

  • Cheliak WM, Rogers DL (1990) Can J For Res 20: 452–463

    Google Scholar 

  • Comai L, Moran P, Maslyar D (1990) Plant Mol Biol 15: 373–381

    Google Scholar 

  • De Block M (1990) Plant Physiol 93: 1110–1116

    Google Scholar 

  • De Cleene M, De Ley, J (1976) Bot Rev 42: 389–464

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) Plant Mol Biol Reporter 1: 19–21

    Google Scholar 

  • Fillatti JJ, Sellmer J, McCown B, Haissig B, Comai L. (1987) Mol Gen Genet 206: 192–199

    Google Scholar 

  • Fromm ME, Taylor LP, Valbot V (1986) Nature 319: 791–793

    Google Scholar 

  • Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) Nature 303: 179–180

    CAS  Google Scholar 

  • Hooykaas PJJ (1989) Plant Mol Biol 13: 327–336

    Google Scholar 

  • Jefferson RA, Kavanagh TA, Bevan MW (1987) EMBO J 6: 3901–3907

    CAS  PubMed  Google Scholar 

  • Kay R, Chan A, Dely M, McPherson J (1987) Science 2: 1299–1302

    Google Scholar 

  • Koncz C, Schell J (1986) Mol Gen Genet 204: 383–396

    CAS  Google Scholar 

  • Miranda Brasileiro AC, Leplé JC, Muzzin J, Ounnoughi D, Michel MF, Jouanin L (1991) Plant Mol Biol 17: 441–452

    Google Scholar 

  • McDonnell RE, Clark, RD, Smith WA, Hinchee MA (1987) Plant Mol Biol 5: 380–386

    Google Scholar 

  • Mok MC, Mok DWS, Armstrong DJ, Shudo K, Isogai Y, Okamoto T (1982) Phytochemistry 21: 1509–1511

    Google Scholar 

  • Morel G, Wetmore RM (1951) Am J Bot 38: 141–143

    Google Scholar 

  • Murashige T, Skoog F (1962) Physiol Plant 15: 473–497

    CAS  Google Scholar 

  • Novel G, Novel M (1973) Mol Gen Genet 120: 319–335

    Google Scholar 

  • Olsen WL (1988) In: Valentine A (ed) Forest and Crop Biotechnology: Progress and Prospects. Spring-Verlag, New York, pp 315–334

    Google Scholar 

  • Parsons TJ, Sinkar VP, Stettler RF, Nester EW, Gordon MP (1986) Bio/Technology 4: 533–536

    Google Scholar 

  • Paszkowski J, Shillito RD, Mandak U, Hohn B, Potrykus I (1984) EMBO J 3: 2717–2722

    Google Scholar 

  • Pythoud F, Sinkar VP, Nester EW, Gordon MP (1987) Bio/Technology 5: 1323–1327

    Google Scholar 

  • Riemenschneider DE (1990) Phytopathology 80: 1099–1102

    Google Scholar 

  • Robaglia C, Vilaine F, Pautot V, Raimond F, Amselem J, Jouanin L, Casse-Delbart F, Tepfer M (1987) Biochimie 69: 231–237

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning. (ed) Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  • Sanders PR, Winter JA, Barnason AR, Rogers SG, Fraley RT (1987) Nucleic Acids Research 15: 1543–1558

    Google Scholar 

  • Simpson RB, Spielmann A, Margossian L, McKnight TD (1986) Plant Mol Biol 6: 403–415

    Google Scholar 

  • Tepfer M, Casse-Delbart F (1987) Microbiol Sci 4: 24–28

    Google Scholar 

  • Vilaine F, Casse-Delbart F (1987) Gene 55: 105–114

    Google Scholar 

  • Yenofsky RL, Fine M, Pellow JW (1990) Proc Natl Acad Sci 87: 3435–3439

    Google Scholar 

  • Zahm P, Hohmeyer C, Geiger K (1984) Mol Gen Genet 194: 188–194

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by N. Amrhein

This work is dedicated to the late Marie France Michel who initiated the poplar biotechnology project at INRA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leple, J.C., Brasileiro, A.C.M., Michel, M.F. et al. Transgenic poplars: expression of chimeric genes using four different constructs. Plant Cell Reports 11, 137–141 (1992). https://doi.org/10.1007/BF00232166

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00232166

Keywords

Navigation