Skip to main content
Log in

Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

All of fourteen sulfate-reducing bacteria tested were able to carry out aerobic respiration with at least one of the following electron donors: H2, lactate, pyruvate, formate, acetate, butyrate, ethanol, sulfide, thiosulfate, sulfite. Generally, we did not obtain growth with O2 as electron acceptor. The bacteria were microaerophilic, since the respiration rates increased with decreasing O2 concentrations or ceased after repeated O2 additions. The amounts of O2 consumed indicated that the organic substrates were oxidized incompletely to acetate; only Desulfobacter postgatei oxidized acetate with O2 completely to CO2. Many of the strains oxidized sulfite (completely to sulfate) or sulfide (incompletely, except Desulfobulbus propionicus); thiosulfate was oxidized only by strains of Desulfovibrio desulfuricans; trithionate and tetrathionate were not oxidized by any of the strains. With Desulfovibrio desulfuricans CSN and Desulfobulbus propionicus the oxidation of inorganic sulfur compounds was characterized in detail. D. desulfuricans formed sulfate during oxidation of sulfite, thiosulfate or elemental sulfur prepared from polysulfide. D. propionicus oxidized sulfite and sulfide to sulfate, and elemental sulfur mainly to thiosulfate. A novel pathway that couples the sulfur and nitrogen cycles was detected: D. desulfuricans and (only with nitrite) D. propionicus were able to completely oxidize sulfide coupled to the reduction of nitrate or nitrite to ammonia. Cell-free extracts of both strains did not oxidize sulfide or thiosulfate, but formed ATP during oxidation of sulfite (37 nmol per 100 nmol sulfite). This, and the effects of AMP, pyrophosphate and molybdate on sulfite oxidation, suggested that sulfate is formed via the (reversed) sulfate activation pathway (involving APS reductase and ATP sulfurylase). Thiosulfate oxidation with O2 probably required a reductive first step, since it was obtained only with energized intact cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CCCP :

carbonyl cyanide m-chlorophenylhydrazone

APS :

adenosine phosphosulfate or adenylyl sulfate

References

  • Abdollahi H, Wimpenny JWT (1990) Effects of oxygen on the growth of Desulfovibrio desulfuricans. J Gen Microbiol 136: 1025–1030

    Article  CAS  Google Scholar 

  • Bak F, Cypionka H (1987) A novel type of energy conservation involving fermentation of inorganic sulphur compounds. Nature 326: 891–892

    Article  CAS  Google Scholar 

  • Bak F, Scheff G, Jansen K-H (1991) A rapid and sensitive ion chromatographic technique for the determination of sulfate and sulfate reduction rates in freshwater lake sediments. FEMS Microbiol Ecol 85: 23–30

    Article  CAS  Google Scholar 

  • Battersby NS, Malcolm SJ, Brown CM, Stanley SO (1985) Sulphate reduction in oxic and suboxic North East Atlantic sediments. FEMS Microbiol Ecol 31: 225–228

    Article  CAS  Google Scholar 

  • Canfield DE, DesMarais DJ (1991) Aerobic sulfate reduction in microbial mats. Science 251: 1471–1473

    Article  CAS  Google Scholar 

  • Chaney AL, Marbach EP (1962) Modified reagents for the determination of urea and ammonia. Clin Chem 8: 130–132

    CAS  PubMed  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14: 454–458

    Article  CAS  Google Scholar 

  • Cohen Y (1989) Photosynthesis in cyanobacterial mats and its relation to the sulfur cycle: a model for microbial sulfur interactions. In: Cohen Y, Rosenberg E (eds). Microbial mats. Physiological ecology of benthic microbial communities. Am Soc Microbiol, Washington, pp 22–36

    Google Scholar 

  • Cypionka H (1986) Sulfide-controlled continuous culture of sulfatereducing bacteria. J Microbiol Methods 5: 1–9

    Article  CAS  Google Scholar 

  • Cypionka H (1989) Characterization of sulfate transport in Desulfovibrio desulfuricans. Arch Microbiol 152: 237–243

    Article  CAS  Google Scholar 

  • Cypionka H, Widdel F, Pfennig N (1985) Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiol Ecol 31: 39–45

    Article  CAS  Google Scholar 

  • Cypionka H, Pfennig N (1986) Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol 143: 366–369

    Article  Google Scholar 

  • Dilling W, Cypionka H (1990) Aerobic respiration in sulfate-reducing bacteria. FEMS Microbiol Lett 71: 123–128

    CAS  Google Scholar 

  • Fitz RM, Cypionka H (1989) A study on electron transport-driven proton translocation in Desulfovibrio desulfuricans. Arch Microbiol 152: 369–376

    Article  CAS  Google Scholar 

  • Fitz RM, Cypionka H (1990) Formation of thiosulfate and trithionate during sulfite reduction by washed cells of Desulfovibrio desulfuricans. Arch Microbiol 154: 400–406

    Article  CAS  Google Scholar 

  • Fitz RM, Cypionka H (1991) Generation of a proton gradient in Desulfovibrio vulgaris. Arch Microbiol 155: 444–448

    Article  CAS  Google Scholar 

  • Fukui M, Takii S (1990) Survival of sulfate-reducing bacteria in oxic surface sediment of a seawater lake. FEMS Microbiol Ecol 73: 317–322

    Article  CAS  Google Scholar 

  • Hardy JA, Hamilton WA (1981) The oxygen tolerance of sulphatereducing bacteria isolated from North Sea waters. Current Microbiol 6: 259–262

    Article  CAS  Google Scholar 

  • Janek A (1933) Ein neues Verfahren zur Herstellung von Schwefelsolen. Kolloid Z 64: 31–32

    Article  CAS  Google Scholar 

  • Jørgensen BB, Bak F (1991) Pathways and microbiology of thiosulfate transformations and sulfate reduction in a marine sediment (Kattegat, Denmark). Appl Environ Microbiol 57: 847–856

    PubMed  PubMed Central  Google Scholar 

  • Kobayashi K, Tachibana S, Ishimoto M (1969) Intermediary formation of trithionate in sulfite reduction by sulfate-reducing bacteria. J Biochem 65: 155–157

    CAS  PubMed  Google Scholar 

  • Krämer M, Cypionka H (1989) Sulfate formation via ATP sulfurylase in thiosulfate- and sulfite-disproportionating bacteria. Arch Microbiol 151: 232–237

    Article  Google Scholar 

  • Laanbrock HJ, Pfennig N (1981) Oxidation of short-chain fatty acids by sulfate-reducing bacteria in freshwater and marine sediments. Arch Microbiol 128: 330–335

    Article  Google Scholar 

  • Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth of Wolinella succinogenes on H2S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144: 147–150

    Article  CAS  Google Scholar 

  • Nor YM, Tabatabai MA (1975) Colorimetric determinations of microgram quantities of thiosulfate and tetrathionate. Anal Lett 8: 537–547

    Article  CAS  Google Scholar 

  • Pachmayr F (1960) Vorkommen und Bestimmung von Schwefelverbindungen in Mineralwasser. Ph D Thesis, University of München, FRG

  • Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110: 3–12

    Article  CAS  Google Scholar 

  • Postgate JR (1979) The sulphate-reducing bacteria. University Press, Cambridge, UK

    Google Scholar 

  • Schmidt K, Liaaen-Jensen S, Schlegel HG (1963) Die Carotinoide der Thiorhodaceac. I. Okenon als Hauptcarotinoid von Chromatium okenii Perty. Arch Mikrobiol 46: 117–126

    Article  CAS  Google Scholar 

  • Segerer A, Neuner A, Kristjansson JK, Stetter KO (1986) Acidianus infernus gen. nov., sp. nov., and Acidianus brierleyi comb. nov.: Facultatively aerobic, extremely acidophilic thermophilic sulfurmetabolizing archaebacteria. Int J System Bacteriol 36: 559–564

    Article  Google Scholar 

  • Stahlmann J, Warthmann R, Cypionka H (1991) Na+-dependent accumulation of sulfate and thiosulfate in marine sulfate-reducing bacteria. Arch Microbiol 155: 554–558

    Article  CAS  Google Scholar 

  • Widdel F, Pfennig N (1982) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. II. Incomplete oxidation of propionate by Desulfobulbus propionicus gen. nov., sp. nov. Arch Microbiol 131: 360–365

    Article  CAS  Google Scholar 

  • Zimmermann M (1979) Photometrische Metall- und Wasseranalysen. Wissenschaftliche Verlagsanstalt, Stuttgart

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dannenberg, S., Kroder, M., Dilling, W. et al. Oxidation of H2, organic compounds and inorganic sulfur compounds coupled to reduction of O2 or nitrate by sulfate-reducing bacteria. Arch. Microbiol. 158, 93–99 (1992). https://doi.org/10.1007/BF00245211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00245211

Key words

Navigation