Skip to main content
Log in

Models of dispersal in biological systems

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

In order to provide a general framework within which the dispersal of cells or organisms can be studied, we introduce two stochastic processes that model the major modes of dispersal that are observed in nature. In the first type of movement, which we call the position jump or kangaroo process, the process comprises a sequence of alternating pauses and jumps. The duration of a pause is governed by a waiting time distribution, and the direction and distance traveled during a jump is fixed by the kernel of an integral operator that governs the spatial redistribution. Under certain assumptions concerning the existence of limits as the mean step size goes to zero and the frequency of stepping goes to infinity the process is governed by a diffusion equation, but other partial differential equations may result under different assumptions. The second major type of movement leads to what we call a velocity jump process. In this case the motion consists of a sequence of “runs” separated by reorientations, during which a new velocity is chosen. We show that under certain assumptions this process leads to a damped wave equation called the telegrapher's equation. We derive explicit expressions for the mean squared displacement and other experimentally observable quantities. Several generalizations, including the incorporation of a resting time between movements, are also studied. The available data on the motion of cells and other organisms is reviewed, and it is shown how the analysis of such data within the framework provided here can be carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abramowitz, M., Stegun, I.: Handbook of mathematical functions. New York: Dover, 1965

    Google Scholar 

  • Alt, W.: Biased random walk models for chemotaxis and related diffusion approximations. J. Math. Biol. 9, 147–177 (1980)

    Google Scholar 

  • Alt, W., Eisele, T., Schaaf, R.: Chemotaxis of gametes: A diffusion approximation IMA. J. Math. Appl. Med. Biol. 2, 109–129 (1985)

    Google Scholar 

  • Aronson, D. G.: The role of diffusion in mathematical population biology: Skellam revisited. In: Capasso, V., Grosso, E., Paveri-Fontana, S. L. (eds.) Mathematics in biology and medicine (Lect. Notes Biomath., vol. 57, pp. 2–6). Berlin Heidelberg New York Tokyo: Springer 1985

    Google Scholar 

  • Berg, H.: How bacteria swim. Sci. Am. 233, 36–44 (1975)

    Google Scholar 

  • Berg, H.: Random walks in biology. Princeton: Princeton University Press 1983

    Google Scholar 

  • Berg, H. C., Brown, D. A.: Chemotaxis in Escherichia coli analysed by three dimensional tracking. Nature, 239, 500–504 (1972)

    Google Scholar 

  • Boyarsky, A.: A Markov chain model for human granulocyte movement. J. Math. Biol. 2, 69–78 (1975)

    Google Scholar 

  • Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 2–89 (1943)

    Google Scholar 

  • Dunbar, S., Othmer, H. G.: On a nonlinear hyperbolic equation describing transmission lines, cell movement and branching random walks. In: Othmer, H. G. (ed.) Nonlinear oscillations in biology and chemistry (Lect. Notes Biomath., vol. 66, pp. 274–289). Berlin Heidelberg New York Tokyo: Springer 1986

    Google Scholar 

  • Dunbar, S.: A branching random evolution and a nonlinear hyperbolic equation. To appear in SIAM J. Appld. Math. (1988)

  • Dunn, G. A.: Characterizing a kinesis response: time averaged measures of cell speed and directional persistence. In: Keller, H. O., Till, G. O. (eds.) Leukocyte locomotion and chemotaxis, pp. 14–33. Basel: Birkhäuser 1983

    Google Scholar 

  • Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Physik 17, 549–560 (1905)

    Google Scholar 

  • Feller, W.: An introduction to probability theory. Wiley: New York 1968

    Google Scholar 

  • Fürth, R.: Die Brownsche Bewegung bei Berücksichtigung einer Persistenz der Bewegungsrichtung. Z. Physik 2, 244–256 (1920)

    Google Scholar 

  • Gail, M. H., Boone, C. W.: The locomotion of mouse fibroblasts in tissue culture. Biophys. J. 10, 980–993 (1970)

    Google Scholar 

  • Goldstein, S.: On diffusion by discontinuous movements, and on the telegraph equation. Quart. J. Mech. Applied Math. VI, 129–156 (1951)

    Google Scholar 

  • Greenberg, E., Canale-Parola, E.: Chemotaxis in Spirocheta aurantia. J. Bacteriol. 130, 485–494 (1977)

    Google Scholar 

  • Gruler, H., Bültman, B. D.: Analysis of cell movement. Blood Cells 10, 61–77 (1984)

    Google Scholar 

  • Hall, R. L.: Amoeboid movement as a correlated walk. J. Math. Biol. 4, 327–335 (1977)

    Google Scholar 

  • Hall, R. L., Peterson, S. C.: Trajectories of human granulocytes. Biophys. J. 25, 365–372 (1979)

    Google Scholar 

  • Henderson, R., Renshaw, E.: Spatial stochastic models and computer simulation applied to the study of tree root systems. In: Barritt, M., Wishart, D. (eds.) Proceedings in Computational Statistics 4th Symposium, Edinburgh 1980, pp. 389–395. Wien: Physica 1980

    Google Scholar 

  • Jones, R.: Movement patterns and egg distribution in cabbage butterflies. J. An. Ecol. 46, 195–212 (1977)

    Google Scholar 

  • Johnson, N. L., Kotz, S.: Distributions in statistics — continuous univariate distributions, vol. 2. New York: Wiley 1970

    Google Scholar 

  • Kac, M.: A stochastic model related to the telegrapher's equation. Rocky Mountain J. Math. 3, 497–509 (1974)

    Google Scholar 

  • Kareiva, P.: Local movement in herbivorous insects: applying a passive diffusion model to markrecapture field experiments. Oecologica 57, 322–327 (1983)

    Google Scholar 

  • Kareiva, P., Shigesada, N.: Analyzing insect movement as a correlated random walk. Oecologica 56, 234–238 (1983)

    Google Scholar 

  • Karlin, S., Taylor, H.: A first course in stochastic processes. New York: Academic Press 1975

    Google Scholar 

  • Keller, H. U., Zimmerman, A.: Orthokinetic and klinokinetic responses of human polymorphonuclear leukocytes. Cell Motility 5, 447–461 (1985)

    Google Scholar 

  • Koshland, D.: Bacterial chemotaxis as a model behavioral system. New York: Raven Press 1980

    Google Scholar 

  • Lackie, J. H.: Cell movement and cell behaviour. London: Allen and Unwin 1986

    Google Scholar 

  • Levin, S. A.; Random walk models of movement and their implications. In: Hallam, T. G., Levin, S. A. (eds.) Mathematical ecology. An introduction (Lect. Notes Biomath., vol. 17, pp. 149–155). Berlin Heidelberg New York Tokyo: Springer 1986

    Google Scholar 

  • Lovely, P. S., Dahlquist, F. W.: Statistical measures of bacterial motility and chemotaxis. J. Theor. Biol. 50, 477–496 (1975)

    Google Scholar 

  • McKean, H.: Chapman-Enskog-Hilbert expansions for a class of solutions of the telegraph equation. J. Math. Phys. 75, 1–10 (1967)

    Google Scholar 

  • Morse, P. M., Feshbach, H.: Methods of theoretical physics. New York: McGraw-Hill 1953

    Google Scholar 

  • Noble, P. B., Levine, M.: Computer-assisted analyses of cell locomotion and chemotaxis. Boca Raton: CRC Press 1986

    Google Scholar 

  • Nossal, R.: Stochastic aspects of biological locomotion. J. Stat. Phys. 30, 391–399 (1983)

    Google Scholar 

  • Nossal, R., Weiss, G. H.: A descriptive theory of cell migration on surfaces. J. Theor. Biol. 47, 103–113 (1974)

    Google Scholar 

  • Okubo, A.: Diffusion and ecological problems: mathematical models. New York Heidelberg Berlin: Springer 1980

    Google Scholar 

  • Othmer, H. G.: Interactions of reaction and diffusion in open systems. Ph.D. Thesis, Minneapolis: Univ. of Minnesota (1969)

    Google Scholar 

  • Othmer, H. G.: On the significance of finite propagation speeds in multicomponent reacting systems. J. Chem. Phys. 64, 460–470 (1976)

    Google Scholar 

  • Patlak, C. S.: Random walk with persistence and external bias. Bull. Math. Biophys. 15, 311–338 (1953)

    Google Scholar 

  • Resibois, P., DeLeener, M.: Classical kinetic theory of fluids. New York: Wiley 1977

    Google Scholar 

  • Segel, L. A.: Mathematical models for cellular behavior. In: Levin, S. A. (ed.) Studies in mathematical biology, vol. 15, pp. 156–190. Washington: MAA 1978

    Google Scholar 

  • Shigesada, N.: Spatial distribution of dispersing animals. J. Math. Biol. 9, 85–96 (1980)

    Google Scholar 

  • Siniff, D. P., Jessen, C. R.: A simulation model of animal movement patterns. Adv. Ecol. Res. 6 185–219 (1969)

    Google Scholar 

  • Skellam, J. G.: The formulation and interpretation of diffusionary processes in population biology. In: Bartlett, M. S., Hiorns, R. W. (eds.) The mathematical theory of the dynamics of biological populations. New York: Academic Press 1973

    Google Scholar 

  • Smith, J. N. M.: The food searching behaviour of two European thrushes. I.: Behavior 48, 276–302 (1974); II.: Behavior 49, 1–61 (1974)

    Google Scholar 

  • Tranquillo, R., Lauffenburger, D.: Stochastic models of leukocyte chemosensory movement. J. Math. Biol. 25, 229–262 (1987)

    Google Scholar 

  • Widder, D.: The Laplace transform. Princeton: Princeton University Press 1946

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by NIH Grant #GM 29123 and by NSF Grant #DMS-8301840

Supported in part by NSF Grant #DMS-8301840

Supported in part by the DFG Heisenberg Program

Rights and permissions

Reprints and permissions

About this article

Cite this article

Othmer, H.G., Dunbar, S.R. & Alt, W. Models of dispersal in biological systems. J. Math. Biology 26, 263–298 (1988). https://doi.org/10.1007/BF00277392

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00277392

Key words

Navigation