Skip to main content
Log in

A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes

  • Original Paper
  • Published:
Current Genetics Aims and scope Submit manuscript

Abstract

Using a plasmid-based termination-read-through assay, the sal4-2 conditional-lethal (temperature-sensitive) allele of the SUP45 (SAL4) gene was shown to enhance the efficiency of the weak ochre suppressor tRNA SUQ5 some 10-fold at 30°C. Additionally, this allele increased the suppressor efficiency of SRM2-2, a weak tRNAGln ochre suppressor, indicating that the allosuppressor phenotype is not SUQ5-specific. A sup + sal4-2 strain also showed a temperature-dependent omnipotent suppressor phenotype, enhancing readthrough of all three termination codons. Combining the sal4-2 allele with an efficient tRNA nonsense suppressor (SUP4) increased the temperature-sensitivity of that strain, indicating that enhanced nonsense suppressor levels contribute to the conditional-lethality conferred by the sal4-2 allele. However, UGA suppression levels in a sup + sal4-2 strain following a shift to the non-permissive temperature reached a maximum significantly below that exhibited by a non-temperature sensitive SUP4 suppressor strain. Enhanced nonsense suppression may not therefore be the primary cause of the conditional-lethality of this allele. These data indicate a role for Sup45p in translation termination, and possibly in an additional, as yet unidentified, cellular process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhmaloka (1991) A molecular genetic analysis of the allosuppressor gene SAL4 in Saccharomyces cerevisiae. PhD thesis, University of Kent, Canterbury

  • All-Robyn JA, Brown N, Otaka E, Liebman SW (1990) Sequence and functional similarity between a yeast ribosomal protein and the Escherichia coli S5 ram protein. Mol Cell Biol 10:6544–6553

    Google Scholar 

  • Boone C, Clark KL, Sprague GF (1992) Identification of a tRNAGln ochre suppressor in Saccharomyces cerevisiae. Nucleic Acids Res 20:4661

    Google Scholar 

  • Breining P, Piepersberg W (1986) Yeast omnipotent suppressor SUP1 (SUP45): nucleotide sequence of the wild-type and a mutant gene. Nucleic Acids Res 14:5187–5197

    Google Scholar 

  • Brown CM, Stockwell PA, Trotman CNA, Tate WP (1990) Sequence analysis suggests that tetranucleotides signal the termination of protein synthesis in eukaryotes. Nucleic Acids Res 18:6339–6345

    Google Scholar 

  • Christianson TW, Sikorski RS, Dante M, Shero JH, Heiter P (1992) Multifunctional yeast high-copy number shuttle vectors. Gene 110:119–122

    Google Scholar 

  • Cox BS (1977) Allosuppressors in yeast. Genet Res 30:187–205

    Google Scholar 

  • Crouzet M, Igzu F, Grant CM, Tuite MF (1988) The allosuppressor gene SAL4 encodes a protein important for maintaining translational fidelity in Saccharomyces cerevisiae. Curr Genet 14:537–543

    Google Scholar 

  • Davidoff-Abelson R, Mindich L (1978) A mutation that increases the activity of nonsense suppressors in Escherichia coli. Mol Gen Genet 159:161–169

    Google Scholar 

  • Devereaux J, Haeberli P, Smithies O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res 12:387–395

    Google Scholar 

  • Didichenko SA, Ter-Avanesyan MD, Smirnov VN (1991) Ribosomebound EF1-α-like protein of yeast Saccharomyces cerevisiae. Eur J Biochem 198:705–711

    Google Scholar 

  • Eustice DC, Wakem LP, Wilhelm JM, Sherman F (1986) Altered 40 S ribosomal subunits in omnipotent suppressors of yeast. J Mol Biol 188:207–214

    Google Scholar 

  • Firoozan M, Grant CM, Duarte JAB, Tuite MF (1991) Quantitation of readthrough of termination codons in yeast using a novel gene fusion assay. Yeast 7:173–184

    Google Scholar 

  • Finkelstein DB, Strausberg S (1983) Heat shock-regulated production of E. coli β-galactosidase in Saccharomyces cerevisiae. Mol Cell Biol 3:1625–1633

    Google Scholar 

  • Goodman HM, Olson MV, Hall BD (1977) Nucleotide sequence of a mutant eukaryotic gene: the yeast tyrosine-inserting ochre-suppressor SUP4-o. Proc Natl Acad Sci USA 74:5453–5457

    Google Scholar 

  • Hawthorne DC, Leupold U (1974) Suppressor mutations in yeast. Curr Top Microbiol Immunol 64:1–47

    Google Scholar 

  • Hoffman CS, Winston F (1987) A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 57:267–272

    Google Scholar 

  • Inge-Vechtomov SG, Andrianova VM (1970) Recessive super suppressors in yeast Genetika 6:103–115

    Google Scholar 

  • Ito H, Wittman HG (1973) Amino-acid replacements in proteins S5 and S12 of two Escherichia coli revertants from streptomycin dependence to independence. Mol Gen Genet 127:19–32

    Google Scholar 

  • Ito M, Fukada Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Google Scholar 

  • Konecki DS, Aune KC, Tate W, Caskey CT (1977) Characterisation of reticulocyte release factor. J Biol Chem 252:4514–4520

    Google Scholar 

  • Laten H, Gorman J, Bock RM (1978) Isopentenyladenosine-deficient tRNA from an antisuppressor mutant of Saccharomyces cerevisiae. Nucleic Acids Res 5:4329–4342

    Google Scholar 

  • Leeds P, Wood JM, Lee B-S, Culbertson MR (1992) Gene products that promote mRNA turnover in Saccharomyces cerevisiae. Mol Cell Biol 12:2165–2177

    Google Scholar 

  • Liebman SW, Sherman F (1976) Inhibition of growth by amber suppressors in yeast. Genetics 82:233–249

    Google Scholar 

  • Manivasakam P, Schiest RH (1993) High-efficiency transformation of Saccharomyces cerevisiae by electroporation. Nucleic Acids Res 21:4414–4415

    Google Scholar 

  • Milman G, Goldstein J, Scolnick E, Caskey CT (1969) Peptide termination. III. stimulation of in vitro termination, Proc Natl Acad Sci USA 63:183–190

    Google Scholar 

  • Mikuni O, Ito K, Moffat J, Matsumara K, McCaughan K, Nobukuni T, Tate W, Nakamura Y (1994) Identification of the prfC gene, which encodes peptide chain release factor-3 of Escherichia coli. Proc Natl Acad Sci USA 91:5798–5802

    Google Scholar 

  • Orr-Weaver TL, Szostak JW (1983) Yeast recombination: the association between double-strand gap repair and crossing over. Proc Natl Acad Sci USA 80:4417–4420

    Google Scholar 

  • Pure GA, Robinson GW, Naumovski L, Frieberg EC (1988) Partial suppression of an ochre mutation in Saccharomyces cerevisiae by multicopy plasmids containing a normal tRNAgln gene. J Mol Biol 183:31–42

    Google Scholar 

  • Rose MD, Novick P, Thomas JH, Botstein D, Fink GR (1987) A Saccharomyces cerevisiae genomic plasmid bank based on a centromere-containing shuttle vector. Gene 60:237–243

    Google Scholar 

  • Rosset R, Gorini L (1969) A ribosomal ambiguity mutation. J Mol Biol 39:95–107

    Google Scholar 

  • Ryden SM, Isaksson LA (1984) A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol Gen Genet 193:38–45

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbour Laboratory, Cold Spring Harbour, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chaintermination inhibitors. Proc Natl Acad Sci USA 74:5463–5469

    Google Scholar 

  • Sherman F (1982) Suppression in the yeast Saccharomyces cerevisiae. In: Strathern J, Jones E, Broach J (eds) The molecular biology of the yeast Sacharomyces: metabolism and gene expression. Cold Spring Harbour Laboratory, Cold Spring Harbour, New York, pp 463–486

    Google Scholar 

  • Sherman F (1991) Getting started with yeast. Methods Enzymol 194:3–20

    Google Scholar 

  • Sherman F, Hicks J (1991) Micromanipulation and dissection of asci. Methods Enzymol 194:21–37

    Google Scholar 

  • Slobin LI (1980) The role of eukaryotic elongation factor Tu in protein synthesis. Eur J Biochem 110:555–563

    Google Scholar 

  • Stansfield I, Tuite MF (1994) Polypeptide chain-termination in Saccharomyces cerevisiae. Curr Genet 25:385–395

    Google Scholar 

  • Stansfield I, Grant CM, Akhmaloka, Tuite MF (1992) Ribosomal association of the yeast SAL4(SUP45) gene product: implications for its role in translation fidelity and termination. Mol Microbiol 16:3469–3478

    Google Scholar 

  • Surguchov AP, Smirnov VN, Ter-Avanesyan MD, Inge-Vechtomov SG (1984) Ribosomal suppression in eukaryotes. Phys Chem Biol Rev 4:147–205

    Google Scholar 

  • Tuite MF, McLaughlin CS (1982) Natural readthrough of a UGA termination codon in a yeast cell-free system: evidence for involvement of both a mitochondrial and nuclear tRNA. Mol Cell Biol 2:490–497

    Google Scholar 

  • Tuite MF, Akhmaloka, Firoozan M, Duarte JAB, Grant CM (1990) Controlling translational accuracy in Saccharomyces cerevisiae: the molecular genetic analysis of a key translation factor, the Sal4 protein. In: McCarthy JEG, Tuite MF (eds) Post-transcriptional control of gene-expression. Springer, Berlin, pp 611–622

    Google Scholar 

  • Vincent A, Liebman SW (1992) The yeast omnipotent suppressor SUP46 encodes a ribosomal protein which is a functional and structural homolog of the Escherichia coli S4 ram protein. Genetics 132:375–386

    Google Scholar 

  • Waldron C, Cox BS, Wills N, Gestland RF, Piper PW, Colby D, Guthrie C (1981) Yeast ochre suppressor SUQ5-o 1 is an altered tRNA UCAser . Nucleic Acids Res 9:3077–3088

    Google Scholar 

  • Weiss WA, Friedberg EC (1987) Normal yeast tRNA CAGgln can suppress amber codons and is encoded by an essential gene. J Mol Biol 192:725–735

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L. A. Grivell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stansfield, I., Akhmaloka & Tuite, M.F. A mutant allele of the SUP45 (SAL4) gene of Saccharomyces cerevisiae shows temperature-dependent allosuppressor and omnipotent suppressor phenotypes. Curr Genet 27, 417–426 (1995). https://doi.org/10.1007/BF00311210

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00311210

Key words

Navigation