Skip to main content
Log in

Investigation of ischaemic necrosis of the femoral head with trace elements

  • Published:
International Orthopaedics Aims and scope Submit manuscript

Summary

This preliminary report examines the possible disturbances in mineral and trace element metabolism in idiopathic ischaemic necrosis of the femoral head. Bony specimens from 45 femoral heads removed from patients with this condition were compared with 62 osteoarthritic and 10 normal femoral heads. Blood analysis was also carried out in the first two groups of patients, who were having joint replacement operations. The normal specimens were obtained at postmortem. Calcium, Magnesium, Iron, Copper, Manganese and Zinc were analysed in blood and bone by atom absorption spectrophotometry, and Cadmium, Chromium, Nickel and Lead by ICP emission spectroscopy. In ischaemic necrosis Magnesium and Copper are especially decreased, but the toxic trace elements Cadmium, Nickel, Lead and Chromium are found in a significantly higher concentration in the femoral head. It is submitted that these findings indicate the need for further investigation.

Résumé

Ce rapport préliminaire envisage les troubles éventuels du métabolisme des métaux et des oligo-éléments dans la nécrose idiopathique de la tête fémorale. Des prélévements osseux pratiqués sur 45 têtes fémorales réséquées chez des patients atteints de cette affection ont été comparés avec 62 têtes arthrosiques et 10 normales, prélevées sur des cadavres. Des analyses sanguines ont également été effectuées dans les deux premiers groupes de malades, qui ont subi une arthroplastie. On a dosé le calcium, le magnésium, le fer, le cuivre, le manganèse et le zinc par spectrophotométrie, dans le sang et dans l'os, et le cadmium, le chrome, le nickel et le plomb par spectroscopie. Dans la nécrose ischémique les taux de magnésium et de cuivre sont nettement abaissés tandis qu'on note, dans la tête fémorale, une augmentation significative de la concentration des oligo-éléments toxiques, cadmium, nickel, plomb et chrome. Ces constatations semblent justifier des études complémentaires.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abel J, Ohnesorge FK (1979) Toxikologie der Spurenelement. In: Gladtke E, Heimann G, Eckert I (eds) Spurenelemente. Thieme, Stuttgart, pp 185–193

    Google Scholar 

  2. Aitken JM (1976) Factors affecting the distribution of zinc in the human skeleton. Calif Tissue Res 20: 23–30

    Google Scholar 

  3. Anders G, Münzenberg KJ, Gebhardt M (1980) Die Beeinflussung kalzergischer Reaktionen durch Magnesium. Magn Bull 2: 108–112

    Google Scholar 

  4. Asling CW, Hurley LS (1963) The influence of trace elements on the skeleton. Clin Orthop 27: 213–262

    Google Scholar 

  5. Battistone GC, Posey WR, Barone JJ, Cutright DE (1972) Zinc and bone healing: The effect of zinc-cysteamin-N-acetic on the healing of extraction wounds in rats. Oral Surg 34: 704–711

    Google Scholar 

  6. Battistone GC, Miller RA, Grower MF, Cutright DE (1974) The effect of ZnCAA on bone healing in rhesus monkeys. J Dent Res. 528–533

  7. Blumenthal I, Lealman GT, Franklyn PP (1980) Fracture of the femur, fish oddur and copper deficiency in a preterm infant. Arch Dis Child 55: 229–231

    Google Scholar 

  8. Boumans PW (1981) Line coincidence table for inductively coupled plasma spektroskopy. Plenum, New York

    Google Scholar 

  9. Brätter P, Schramel P (1983) Trace element analytical chemistry in medicine and biology. de Gruyter, Berlin New York

    Google Scholar 

  10. Brandt G, Lutz D, Prestle H (1974) Spurenelementgehalt in Leber, Knochen und Ovar. Z Geront 8: 28–37

    Google Scholar 

  11. Calhoun NR, Smith JC, Becker KL (1974) The role of zinc in bone metabolism. Clin Orthop. 103: 212–234

    Google Scholar 

  12. Clayton BE (1980) Clinical chemistry of trace elements. Adv Clin Chem 21: 147–176

    Google Scholar 

  13. Dallmann PR (1974) Tissue effects of iron deficiency. In: Jacobs A, Worwood M (eds) Iron in biochemistry and medicine. Academ Press, London, pp 437–475

    Google Scholar 

  14. Davis JM, Svendsgaard DJ (1987) Lead and child development. Nature 329: 297–300

    Google Scholar 

  15. Daunderer M (1983) Klinische Toxikologie. Ecomed, Landsberg

    Google Scholar 

  16. Dielert E, Milachowski KA, Schramel P (1983) Die Bedeutung der legierungsspezifischen Elemente Eisen, Kobalt, Chrom und Nickel für die aspetische Lockerung von Hüftgelenkstotalendoprothesen. Z Orthop 121: 58–62

    Google Scholar 

  17. Dixon WJ (1981) BMDP statistical software. University of California Press, Los Angeles

    Google Scholar 

  18. Einbrodt HJ, Rosmanith J, Prajsnar D (1976) Der Cadmiumgehalt im Blut und Rauchgewohnheiten. Naturwissenschaften 63: 148–152

    Google Scholar 

  19. Eschberger J, Maruna RFL, Trojan E (1978) Morphologische und biochemische Untersuchungen an Oberschenkelköpfen nach Schenkelhalsfrakturen. Acta Med Austriaca 11: 5

    Google Scholar 

  20. Ferguson A, Laing P, Hodge E (1960) The ionisation of metal implants in living tissues. J Bone Joint Surg [Br] 42: 77

    Google Scholar 

  21. Glimcher MJ, Kenzora JE (1979) The biology of osteonecrosis of the human femoral head and its clinical implications. II. The pathological changes in the femoral head as an organ and in the hip joint. Clin Orthop 139: 283–312

    Google Scholar 

  22. Iyengar GV, Kollmer WE, Bowen HJM (1978) The elemental composition of human tissues and body fluids. Chemie, Weinheim

    Google Scholar 

  23. Keck E, Schärtl A, Krüskemper HL (1984) Einfluß von Parathormon, Calcitonin und Prostaglandin E2 auf den in vitro Magnesiumstoffwechsel menschlicher Spongiosa. Mag Bull 6: 105–111

    Google Scholar 

  24. Kirchgessner M, Schwarz FJ, Grassmann E, Roth HP, Schnegg A (1979) Experimentelle Studien zur Diagnose von Spurenelementmangel. In: Gladtke E, Heimann G, Eckert I (eds) Spurenelemente. Thieme, Stuttgart, 68–91

    Google Scholar 

  25. Lappalainen R, Knuutilla M, Lammi S, Alhava EM, Olkkonen H (1982) ZN and Cu-content in human cancellous bone. Acta Orthop Scand 53: 51–56

    Google Scholar 

  26. Reference deleted

  27. Michel R, Hofmann J, Zilkens J (1979) Influence of metal implants on the trace element contents in human and mamalian tissue and organs. In: IAEA, Nuclear activation techniques in the life sciences. Internation atomic energy agency, Wien, pp 351–362

    Google Scholar 

  28. Milachowski KA (1986) Spurenelementstoffwechseluntersuchungen des Haltungs-und Bewegungsapparates. Thieme, Stuttgart New York

    Google Scholar 

  29. Milachowski KA, Matzen KA (1982) Mineral- und Spurenelementstoffwechselstörungen bei der Koxarthrose. Z Orthop 120: 828–832

    Google Scholar 

  30. Milachowski KA, Moschinski D (1981) Magnesium and bone healing. Mag Bull 3: 16

    Google Scholar 

  31. Milachowski KA, Moschinski D, Jaeschock R, Kaschner A (1980) The influence of zinc on bone healing in rats. Arch Orthop Trauma Surg 96: 17–21

    Google Scholar 

  32. Münzenberg KJ, Kühr J (1981) Die Bedeutung des Magnesiums in der Orthopädie. Mag Bull 3: 73–77

    Google Scholar 

  33. Pesch HJ, Brandt G, Lutz D (1973) Beitrag zur Mineralpathologie des Knochens. Verh Dtsch Ges Pathol 57: 467–471

    Google Scholar 

  34. Prasad AS (1976) Trace elements in human health and disease. Academic Press, New York

    Google Scholar 

  35. Quint P, Althoff J, Reiling HE, Höhling HJ (1982) Inverstvoltammetrische Bestimmungen von Cd, Cu, Pb und Zn für verschiedene Stadien der Knorpelmineralisation. Fresenius Z Anal Chem 311: 415–418

    Google Scholar 

  36. Quint P, Reddi AH, Althoff J, Höhling HJ (1981) Enrichment of CO2 and trace elements on matrix induced enchondrale bone formation. Calcif Tissue Int 33: 123–127

    Google Scholar 

  37. Reichlmayr-Lais AM, Kirchgessner M (1981) Zur Extentialität von Blei für das tierische Wachstum. Z. Tierphysiol Tierernaer Futtermittelkd 46: 1–12

    Google Scholar 

  38. Schramel P, Ovcar-Pavlu J (1979) Abhängigkeit des Meßsignals von der Säurekonzentration der Probe bei der ICP-Emissionsspektralanalyse. Fresenius Z Anal Chem 298: 28–34

    Google Scholar 

  39. Schramel P, Wolf A, Seif R, Klose BJ (1980) Eine neue Apparatur zur Druckverachsung von biologischem Material. Fresenius Z Anal Chem 302: 62–69

    Google Scholar 

  40. Schramel P (1982) Die Leistungsfähigkeit der ICP-Emissionsspektroskopie zur Bestimmung von Spurenelementen in biologischen, medizinischen und Umweltproben. Fresenius Z Anal Chem 310: 209–214

    Google Scholar 

  41. Schwarz K, Mertz W (1959) Chromium (1, 2, 3) and the glucose tolerance-factor. Arch Biochem Biophys 85: 292–297

    Google Scholar 

  42. Seelig MS (1980) Magnesium deficiency in the pathogenesis of disease. Plenum, New York

    Google Scholar 

  43. Underwood EJ (1977) Trace elements in human and animal nutritution, 4th edn. Acad Press, New York

    Google Scholar 

  44. Zinn WM (1971) Idiopathic ischaemic necrosis of the femoral head in adults. Thieme, Stuttgart

    Google Scholar 

  45. Zumkley H (1983) Spurenelemente — Grundlagen, Ätiologie, Diagnose, Therapie. Thieme, Stuttgart New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Milachowski, K.A. Investigation of ischaemic necrosis of the femoral head with trace elements. International Orthopaedics 12, 323–330 (1988). https://doi.org/10.1007/BF00317832

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00317832

Key words

Navigation