Skip to main content
Log in

AUG codons in the RNA leader sequences of the yeast PET genes CBS1 and SCO1 have no influence on translation efficiency

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

We report that the major transcription start sites of the yeast PET gene SCO1 are located at positions-149 and -125 relative to the AUG initiation codon of the SCO1 reading frame. The leader sequences of the resulting mRNAs possess a single AUG codon at position-49, which initiates a short open reading frame of three amino acids. The recent finding of a similar situation in the case of the PET gene CBS1 prompted us to address the question as to whether these AUG codons might play some role in the expression of these PET genes. After removal of the upstream AUG codons by site-directed mutagenesis, expression was monitored by use of lacZ fusions and compared to the respective wildtype constructs. Our data show that under all growth conditions tested the leader-contained AUG initiation codons have no significant influence on the expression of both PET genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abastado J-P, Miller PF, Jackson BM, Hinnebusch AG (1991) Mol Cell Biol 11:486–496

    Google Scholar 

  • Casadaban MJ, Martinez-Arias A, Shapira SK, Chou J (1983) Methods Enzymol 100:293–308

    Google Scholar 

  • Cigan AM, Donahue TF (1987) Gene 59:1–18

    Google Scholar 

  • Costanzo MC, Fox TD (1990) Annu Rev Genet 24:91–113

    Google Scholar 

  • Costanzo MC, Seaver EC, Fox TD (1989) Genetics 122:297–305

    Google Scholar 

  • Dieckmann CL, Homison G, Tzagoloff A (1984) J Biol Chem 259:4732–4738

    Google Scholar 

  • Forsbach V, Pillar T, Gottenöf T, Rödel G (1989) Mol Gen Genet 218:57–63

    Google Scholar 

  • Forsburg SL, Guarente L (1989) Genes Dev 3:1166–1178

    Google Scholar 

  • Fritz H-J, Hohlmaier J, Kramer W, Ohmayer A, Wippler J (1988) Nucleic Acids Res 16:6987–6999

    Google Scholar 

  • Guarente L (1983) Methods Enzymol 101:181–191

    Google Scholar 

  • Healy AM, Helser TL, Zitomer RS (1987) Mol Cell Biol 7:3785–3791

    Google Scholar 

  • Hill JE, Myers AM, Koerner TJ, Tzagoloff A (1986) Yeast 2:163–167

    Google Scholar 

  • Hinnebusch AG (1988) Trends Genet 4:169–174

    Google Scholar 

  • Klebe RJ, Harriss JV, Sharp ZD, Douglas MG (1983) Gene 25:333–341

    Google Scholar 

  • Körte A, Forsbach V, Gottenöf T, Rödel G (1989) Mol Gen Genet 217:162–167

    Google Scholar 

  • Kozak M (1978) Cell 15:1109–1123

    Google Scholar 

  • Kozak M (1987 a) Nucleic Acids Res 15:8125–8148

    Google Scholar 

  • Kozak M (1987 b) Mol Cell Biol 7:3438–3445

    Google Scholar 

  • Kozak M (1989) J Cell Biol 108:229–241

    Google Scholar 

  • Kramer W, Fritz H-J (1987) Methods Enzymol 154:350–367

    Google Scholar 

  • Krummeck G, Rödel G (1990) Curr Genet 18:13–15

    Google Scholar 

  • Kunkel TA (1985) Proc Natl Acad Sci USA 82:488–492

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. A laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Marykwas DL, Fox TD (1989) Mol Cell Biol 9:484–491

    Google Scholar 

  • Messing J (1983) Methods Enzymol 101:20–78

    Google Scholar 

  • Muroff I, Tzagoloff A (1990) EMBO J 9:2765–2773

    Google Scholar 

  • Olesen JT, Guarente L (1990) Genes Dev 4:1714–1729

    Google Scholar 

  • Rödel G (1986) Curr Genet 11:41–45

    Google Scholar 

  • Rödel G, Fox TD (1987) Mol Gen Genet 206:45–50

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schulze M, Rödel G (1988) Mol Gen Genet 211:492–498

    Google Scholar 

  • Schulze M, Rödel G (1989) Mol Gen Genet 216:37–43

    Google Scholar 

  • Sherman F, Fink GR, Lawrence CW (1986) Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Strick CA, Fox TD (1987) Mol Cell Biol 7:2728–2734

    Google Scholar 

  • Struhl K (1987) Cell 49:295–297

    Google Scholar 

  • Tzagoloff A, Dieckmann CL (1990) Microbiol Rev 54:211–225

    Google Scholar 

  • Van Loon APGM, Van Eijk E, Grivell LA (1983) EMBO J 2:1765–1770

    Google Scholar 

  • Werner M, Feller A, Messenguy F, Pierard A (1987) Cell 49:805–813

    Google Scholar 

  • Wu M, Tzagoloff A (1989) J Biol Chem 264:11122–11130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by K. Wolf

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krummeck, G., Gottenöf, T. & Rödel, G. AUG codons in the RNA leader sequences of the yeast PET genes CBS1 and SCO1 have no influence on translation efficiency. Curr Genet 20, 465–469 (1991). https://doi.org/10.1007/BF00334773

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00334773

Key words

Navigation