Skip to main content
Log in

Formation and stability of interstrand cross-links induced by cis- and trans-diamminedichloroplatinum (II) in the DNA of Saccharomyces cerevisiae strains differing in repair capacity

  • Original articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Four haploid yeast strains differing in proficiency for DNA repair were treated with cis- or transDDP. The wild type was least sensitive while the excision-deficient mutants rad1, rad2 and snm1exhibited higher sensitivities to either platinum compound. In all four strains tested cisDDP showed a two- to five-fold higher cytotoxicity than equimolar concentrations of transDDP. DNA interstrand cross-linking was caused by both agents in all strains. However, transDDP introduced more DNA cross-links at exposure times up to 6 h while cisDDP was the more active cross-linking agent at longer times. There was no clear-cut correlation of the number of DNA interstrand cross-links with survival. Formaldehyde-treated cells showed DNA with lower buoyant density due to proteinase K sensitive DNA-protein cross-linking; this effect was not observed after treatment with either platinum compound. Post-treatment incubation of wild-type cells exposed to cisDDP led to degradation of DNA by single and double-strand breaks, parallel with further increase of DNA interstrand cross-linking. DNA from transDDP-treated cells did not show extensive degradation although interstrand cross-links were lost during liquid holding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alazard P, Germanier M, Johnson NP (1982) Mutat Res 93:327–337

    Google Scholar 

  • Anderson KS (1979) Mutat Res 76:209–214

    Google Scholar 

  • Bankmann M, Brendel M (1989) J Photochem Photobiol B 4:57–74

    Google Scholar 

  • Beck DJ, Popoff S, Sancar A, Rupp WD (1985) Nucleic Acid Res 13:7395–7412

    Google Scholar 

  • Bender E, Brendel M (1988) Mutat Res 197:59–66

    Google Scholar 

  • Brendel M, Ruhland A (1984) Mutat Res 133:51–85

    Google Scholar 

  • Budd M, Mortimer RK (1982) Murat Res 103:19–24

    Google Scholar 

  • Burgi E, Hershey AD (1963) Biophys J 3:309–321

    Google Scholar 

  • Cassier-Chauvat C, Moustacchi E (1988) Curr Genet 13:37–40

    Google Scholar 

  • Ciccarelli RB, Solomon MJ, Varshavsky A, Lippard SJ (1985) Biochem 24:7533–7540

    Google Scholar 

  • Cole RS (1971) J Bacteriol 107:846–852

    Google Scholar 

  • Earhart RH (1979) Cancer Rep 63:231–233

    Google Scholar 

  • Eastman A (1985) Biochem 24:5027–5032

    Google Scholar 

  • Eaton NR (1962) J Bacteriol 83:1359–1360

    Google Scholar 

  • Fichtinger-Sherman AMJ, van de Veer JL, den Hartog JHJ, Lohmann PHM, Reedijk J (1985) Biochem 24:707–713

    Google Scholar 

  • Filipski J, Kohn KK, Prather R, Bonner WM (1979) Science 204:181–183

    Google Scholar 

  • Fleer R, Brendel M (1979) Mol Gen Genet 176:41–52

    Google Scholar 

  • Freifelder D (1970) J Mol Biol 54:567–577

    Google Scholar 

  • Friedberg EC (1988) Microbiol Rev 52:70–102

    Google Scholar 

  • Green M (1987) Transition Met Chem 12:186–192

    Google Scholar 

  • Haase E, Riehl D, Mack M, Brendel M (1989) Mol Gen Genet 218:64–71

    Google Scholar 

  • Hannan MA, Zimmer SG, Hazle J (1984) Mutat Res 127:23–30

    Google Scholar 

  • Haynes RH, Kunz BA (1981) In: Strathern JF, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces. Life cycle and inheritance. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 371–414

    Google Scholar 

  • Henriques JAP, Andrade HHR, Bankmann M, Brendel M (1989) Curr Genet 16:75–80

    Google Scholar 

  • Henriques JAP, Moustacchi E (1980) Genetics 95:273–288

    Google Scholar 

  • Johnson NP, Hoeschele JD, Rahn RO, O'Neil JP, Hsie AW (1980) Cancer Res 40:1463–1468

    Google Scholar 

  • Kircher M, Fleer R, Ruhland A, Brendel M (1979) Mutat Res 63:273–289

    Google Scholar 

  • Köpf-Maier P (1986) Naturwissenschaften 73:239–247

    Google Scholar 

  • Lippard SJ, Hoeschele JD (1979) Proc Natl Acad Sci USA 76:6091–6095

    Google Scholar 

  • Lippard SJ (1982) Science 218:1075–1082

    Google Scholar 

  • Long DF, Repta AJ (1981) Biopharm Drug Disposition 2:1–16

    Google Scholar 

  • McCall JS, Potter BJ (1973) Ultracentrifugation, Bailliere Tindall, London

    Google Scholar 

  • Moustacchi E (1987) Adv Rad Biol 13:1–30

    Google Scholar 

  • Moustacchi E, Cassier C, Chanet R, Magana-Schwencke N, Saeki T, Henriques JAP (1983) In: Cellular responses to DNA damage, Alan R Liss, New York, pp 87–106

    Google Scholar 

  • Olinski R, Wedrychowsky A, Schmidt WN, Briggs RC, Hnilica LS (1987) Cancer Res 47:201–205

    Google Scholar 

  • Petes TD, Byers B, Fangman WL (1973) Proc Natl Acad Sci USA 70:3072–3076

    Google Scholar 

  • Pinto AL, Lippard SJ (1985) Proc Natl Acad Sci USA 82:4616–4619

    Google Scholar 

  • Resnick MA, Martin P (1976) Mol Gen Genet 143:119–129

    Google Scholar 

  • Roberts JJ, Friedlos F (1987) Cancer Res 47:31–36

    Google Scholar 

  • Roberts JJ, Thomson AJ (1979) Progr Nucleid Acid Res Mol Biol 22:71–129

    Google Scholar 

  • Rosenberg B, van Camp L, Trosko JE, Mansour VH (1969) Nature 222:385–386

    Google Scholar 

  • Royer-Pokora B, Gordon LK, Haseltine WK (1981) Nucleic Acid Res 9:4595–4609

    Google Scholar 

  • Ruhland A, Kircher M, Wilborn F, Brendel M (1981) Mutat Res 91:457–462

    Google Scholar 

  • Sherman SE, Gibson D, Wang AH, Lippard SJ (1985) Science 230:412–417

    Google Scholar 

  • Siede W, Brendel M (1982) Curr Genet 5:33–38

    Google Scholar 

  • Verly WG, Brakier L (1969) Biochim Biophys Acta 174:674–685

    Google Scholar 

  • Zwelling LA, Anderson T, Kohn KW (1979) Cancer Res 39:365–369

    Google Scholar 

  • Zwelling LA (1983) In: Lippard SJ (ed) Platinum, gold and other metal chemotherapeutic agents, ACS Symposium Series, 209, Am Chem Soc, Washington, pp 51–73

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilborn, F., Brendel, M. Formation and stability of interstrand cross-links induced by cis- and trans-diamminedichloroplatinum (II) in the DNA of Saccharomyces cerevisiae strains differing in repair capacity. Curr Genet 16, 331–338 (1989). https://doi.org/10.1007/BF00340711

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00340711

Key words

Navigation