Skip to main content
Log in

Multiple-copy integration of the α-galactosidase gene from Cyamopsis tetragonoloba into the ribosomal DNA of Kluyveromyces lactis

  • Original Articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

We have developed a vector system for high-copy-number integration into the ribosomal DNA of the yeast Kluyveromyces lactis. This system is analogous to the pMIRY-system developed for Saccharomyces cerevisiae. Plasmids containing a portion of K. lactis rDNA for targeted homologous recombination, as well as the S. cerevisiae TRP1 gene with various promoter deletions, were constructed and, after transformation to K. lactis, analyzed for both copy number and stability. These plasmids were found to be present in about 60 copies per cell and were stably maintained during growth under non-selective conditions. Using this vector system, we expressed a fusion construct containing the S. cerevisiae GAL7 promoter, the SUC2 (invertase) signal sequence and the gene coding for α-galactosidase from the plant Cyamopsis tetragonoloba. Although the maximum copy number of these integrated plasmids was only about 15, we nevertheless obtained a high level of α-galactosidase production (250 mg/l) with a secretion efficiency of about 95%. When compared to extrachromosomal K. lactis vectors containing the same fusion construct, the multicopy integrants showed a much higher α-galactosidase production level and a considerably higher stability under non-selective conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beggs JD (1978) Nature 275: 104–109

    Google Scholar 

  • Bianchi MM, Falcone C, Chen XJ, Wéslowki-Louvel M, Frontali L, Fukuhara H (1987) Curr Genet 12: 185–192

    Google Scholar 

  • Bianchi MM, Santarelli R, Frontali L (1991) Curr Genet 19: 155–161

    Google Scholar 

  • Braus G, Paravicini G, Hütter R (1988) Mol Gen Genet 212: 495–504

    Google Scholar 

  • Broach JR (1982) Cell 28: 203–204

    Google Scholar 

  • Chen XJ, Saliola M, Falcone C, Bianchi MM, Fukuhara H (1986) Nucleic Acids Res 14: 4471–4481

    Google Scholar 

  • Chen XJ, Bianchi MM, Suda K, Fukuhara H (1989) Curr Genet 16: 95–98

    Google Scholar 

  • Das S, Hollenberg CP (1982) Curr Genet 6: 123–128

    Google Scholar 

  • Erhart E, Hollenberg CP (1983) J Bacteriol 156: 83–89

    Google Scholar 

  • Falcone C, Saliola M, Chen XJ, Frontali L, Fukuhara H (1986) Plasmid 15: 248–252

    Google Scholar 

  • Fellinger AJ, Verbakel JMA, Veale RA, Sudbery PE, Bom IJ, Overbeeke N, Verrips CT (1991) Yeast 7: 463–473

    Google Scholar 

  • Gietz RD, Sugino A (1988) Gene 74: 527–534

    Google Scholar 

  • Hughes SG, Overbeeke N, Robinson S, Pollock K, Smeets FLM (1988) Plant Mol Biol 11: 783–789

    Google Scholar 

  • Lopes TS, Klootwijk J, Veenstra AE, Van der Aar PC, Van Heerikhuizen H, Raué HA, Planta RJ (1989) Gene 79: 199–206

    Google Scholar 

  • Lopes TS, Hakkaart GAJ, Koerts BL, Raué HA, Planta RJ (1991) Gene 105: 83–90

    Google Scholar 

  • Maleszka R, Clark-Walker GD (1990) Mol Gen Genet 223: 342–344

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

    Google Scholar 

  • Meier H, Reid JSG (1982) Reserve polysaccharides other than starch in higher plants. In: Loewus FA, Tanner W (eds) Encyclopedia of plant physiology, New, Series 13A. Springer-Verlag, New York, pp 418–471

    Google Scholar 

  • Nogi Y, Fukasawa T (1983) Nucleic Acids Res 11: 8555–8568

    Google Scholar 

  • Overbeeke N, Fellinger AJ, Toonen MY, Van Wassenaar PD, Verrips CT (1989) Plant Mol Biol 13: 541–550

    Google Scholar 

  • Overbeeke N, Termorshuizen GHM, Giuseppin MLF, Underwood DR, Verrips CT (1990) Appl Environ Microbiol 56: 1429–1434

    Google Scholar 

  • Pedersen MB (1983) Carlsberg Res Comm 48: 485–503

    Google Scholar 

  • Petes TD (1979) Proc Natl Acad Sci USA 76: 410–414

    Google Scholar 

  • Sierkstra LN, Verbakel JMA, Verrips CT (1991) Curr Genet 19: 81–87

    Google Scholar 

  • Southern EM (1975) J Mol Biol 98: 503–517

    Google Scholar 

  • Stark MJR, Milner JS (1989) Yeast 5: 35–50

    Google Scholar 

  • Taussig R, Carlsson M (1983) Nucleic Acids Res 11: 1943–1954

    Google Scholar 

  • Van den Berg JA, Van der Laken KJ, Van Ooyen AJJ, Renniers TCHM, Rietveld K, Schaap A, Brake AJ, Bishop RJ, Schultz K, Moyer D, Richman M, Shuster JR (1990) Bio/ Technology 8: 135–139

    Google Scholar 

  • Verbakel JMA (1991) Heterologous gene expression in the yeast Saccharomyces cerevisiae. PhD thesis, Rijksuniversiteit Utrecht, The Netherlands

  • Verbeet MPh, Van Heerikhuizen H, Klootwijk J, Fontijn R, Planta RJ (1984) Mol Gen Genet 195: 116–125

    Google Scholar 

  • Yanisch-Perron C, Vieira J, Messing J (1985) Gene, 33: 103–119

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by L.A. Grivell

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergkamp, R.J.M., Kool, I.M., Geerse, R.H. et al. Multiple-copy integration of the α-galactosidase gene from Cyamopsis tetragonoloba into the ribosomal DNA of Kluyveromyces lactis . Curr Genet 21, 365–370 (1992). https://doi.org/10.1007/BF00351696

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351696

Key words

Navigation