Skip to main content
Log in

Chloroplast DNA evolution among legumes: Loss of a large inverted repeat occurred prior to other sequence rearrangements

  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

We have compared the sequence organization of four previously uncharacterized legume chloroplast DNAs - from alfalfa, lupine, wisteria and subclover — to that of legume chloroplast DNAs that either retain a large, ribosomal RNA-encoding inverted repeat (mung bean) or have deleted one half of this repeat (broad bean). The circular, 126 kilobase pair (kb) alfalfa chloroplast genome, like those of broad bean and pea, lacks any detectable repeated sequences and contains only a single set of ribosomal RNA genes. However, in contrast to broad bean and pea, alfalfa chloroplast DNA is unrearranged (except for the deletion of one segment of the inverted repeat) relative to chloroplast DNA from mung bean. Together with other findings reported here, these results allow us to determine which of the four possible inverted repeat configurations was deleted in the alfalfa-pea-broad bean lineage, and to show how the present-day broad bean genome may have been derived from an alfalfa-like ancestral genome by two major sequence inversions. The 147 kb lupine chloroplast genome contains a 22 kb inverted repeat and has essentially complete colinearity with the mung bean genome. In contrast, the 130 kb wisteria genome has deleted one half of the inverted repeat and appears colinear with the alfalfa genome. The 140 kb subclover genome has been extensively rearranged and contains a family of at least five dispersed repetitive sequence elements, each several hundred by in size; this is the first report of dispersed repeats of this size in a land plant chloroplast genome. We conclude that the inverted repeat has been lost only once among legumes and that this loss occurred prior to all the other rearrangements observed in subclover, broad bean and pea. Of those lineages that lack the inverted repeat, some are stable and unrearranged, other have undergone a moderate amount of rearrangement, while still others have sustained a complex series of rearrangement either with or without major sequence duplications and transpositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldrich J, Cherny B, Merlin E, Williams C, Mets L (1985) Curr Genet 9:233–238

    Google Scholar 

  • Birnboim HC, Doly J (1979) Nucleic Acids Res 7:1513–1523

    Google Scholar 

  • Bohnert HJ, Loffelhardt W (1982) FEBS Lett 150:403–406

    Google Scholar 

  • Brears T, Schardl CL, Lonsdale DM (1986) Plant Mol Biol 6:171–177

    Google Scholar 

  • Calos MP, Miller JH (1980) Cell 20:579–595

    Google Scholar 

  • Chu NM, Tewari KK (1982) Mol Gen Genet 186:23–32

    Google Scholar 

  • Coates D, Cullis CA (1982) Plant Mol Biol 1:183–189

    Google Scholar 

  • Dagert M, Ehrlich SD (1979) Gene 6:23–38

    Google Scholar 

  • Dang LH, Pring DR (1986) Plant Mol Biol 6:119–123

    Google Scholar 

  • Day A, Ellis THN (1984) Cell 39:359–368

    Google Scholar 

  • de Heij HT, Lustig H, Moeskops DIM, Bovenberg WA, Bisanz C, Groot GSP (1983) Curr Genet 7:1–6

    Google Scholar 

  • Fluhr R, Edelman M (1981) Nucleic Acids Res 9:6841–6853

    Google Scholar 

  • Fluhr R, Fromm H, Edelman M (1983) Gene 25:271–280

    Google Scholar 

  • Gelvin SB, Howell SH (1979) Mol Gen Genet 173:315–322

    Google Scholar 

  • Gillham NW, Boynton JE, Harris EH (1985) In: Cavalier-Smith T (ed) DNA evolution: natural selection and genome size. Wiley, New York, pp 299–351

    Google Scholar 

  • Hirai A, Ishibashi T, Morikami A, Iwatsuki N, Shinozaki K, Sugiura M (1985) Theor Appl Genet 70:117–122

    Google Scholar 

  • Howe CJ (1985) Curr Genet 10:139–145

    Google Scholar 

  • Ko K, Strauss NA, Williams JP (1983) Curr Genet 7:255–263

    Google Scholar 

  • Ko K, Strauss NA, Williams JP (1984) Curr Genet 8:359–367

    Google Scholar 

  • Koller B, Delius H (1980) Mol Gen Genet 178:261–269

    Google Scholar 

  • Kolodner R, Tewari KK (1975) Biochim Biophys Acta 402:372–390

    Google Scholar 

  • Maizels N (1976) Cell 9:431–438

    Google Scholar 

  • McIntosh L, Poulsen C, Bogorad L (1980) Nature (London) 288:556–560

    Google Scholar 

  • Mubumbila M, Gordon KHJ, Crouse EJ, Burkard G, Weil JH (1983) Gene 21:257–266

    Google Scholar 

  • Mubumbila M, Crouse EJ, Weil JH (1984) Curr Genet 8:379–385

    Google Scholar 

  • Ohyama K, Yamano Y, Fukuzawa H, Komano T, Yamagishi H, Fujimoto S, Sugiura M (1983) Mol Gen Genet 189:1–9

    Google Scholar 

  • Palmer JD (1982) Nucleic Acids Res 10:1593–1605

    Google Scholar 

  • Palmer JD (1983) Nature (London) 301:92–93

    Google Scholar 

  • Palmer JD (1985a) Annu Rev Genet 19:325–354

    Google Scholar 

  • Palmer JD (1985b) In: MacIntyre RJ (ed) Monographs in evolutionary biology: molecular evolutionary genetics. Plenum, New York, pp 131–240

    Google Scholar 

  • Palmer JD (1986) Methods Enzymol 118:167–186

    Google Scholar 

  • Palmer JD, Stein DB (1982) Curr Genet 5:165–170

    Google Scholar 

  • Palmer JD, Stein DB (1986) Curr Genet 10:823–833

    Google Scholar 

  • Palmer JD, Thompson WF (1981a) Proc Natl Acad Sci USA 78:5533–5537

    Google Scholar 

  • Palmer JD, Thompson WF (1981b) Gene 15:21–26

    Google Scholar 

  • Palmer JD, Thompson WF (1982) Cell 29:537–550

    Google Scholar 

  • Palmer JD, Edwards H, Jorgensen RA, Thompson WF (1982) Nucleic Acids Res 10:6819–6832

    Google Scholar 

  • Palmer JD, Singh GP, Pillay DTN (1983a) Mol Gen Genet 190:13–19

    Google Scholar 

  • Palmer JD, Shields CR, Cohen DB, Orton TJ (1983b) Theor Appl Genet 65:181–189

    Google Scholar 

  • Palmer JD, Osorio B, Watson JC, Edwards H, Dodd J, Thompson WF (1984) In: Thornber JP, Staehelin LA, Hallick RB (eds) Biosynthesis of the photosynthetic apparatus: molecular biology, development and regulation. Liss, New York, pp 273–283 (UCLA Symposia on Molecular and Cellular Biology, new series, vol 14)

    Google Scholar 

  • Palmer JD, Jorgensen RA, Thompson WF (1985a) Genetics 109:195–213

    Google Scholar 

  • Palmer JD, Boynton JE, Gillham NW, Harris EH (1985b) In: Steinback KE, Bonitz S, Arntzen CJ, Bogorad L (eds) Molecular biology of the photosynthetic apparatus. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, pp 269–278

    Google Scholar 

  • Polhill RM, Raven PH (1981) Advances in legume systematics, part 1. Royal Botanic Gardens, Kew

    Google Scholar 

  • Quigley F, Weil JH (1981) Curr Genet 9:495–503

    Google Scholar 

  • Rochaix JD (1978) J Mol Biol 126:597–617

    Google Scholar 

  • Rochaix JD, Malnoe P (1978) Cell 15:661–670

    Google Scholar 

  • Shinozaki K, Sun CR, Sugiura M (1984) Mol Gen Genet 197:363–367

    Google Scholar 

  • Spielmann A, Ortiz W, Stutz E (1983) Mol Gen Genet 190:5–12

    Google Scholar 

  • Stein DB, Palmer JD, Thompson WF (1986) Curr Genet 10:835–841

    Google Scholar 

  • Takaiwa F, Sugiura M (1982) Eur J Biochem 124:13–19

    Google Scholar 

  • Thomas KM, Wood BJ, Bassett CL, Rawson JRY (1984) Curr Genet 8:291–297

    Google Scholar 

  • Tohdoh N, Sugiura M (1982) Gene 17:213–218

    Google Scholar 

  • Vieira J, Messing J (1982) Gene 19:259–268

    Google Scholar 

  • Westhoff P, Nelson N, Bunemann H, Herrmann RG (1981) Curr Genet 4:109–120

    Google Scholar 

  • Whitfeld PR, Bottomley W (1983) Annu Rev Plant Physiol 34:279–310

    Google Scholar 

  • Zurawski G, Perrot B, Bottomley W, Whitfeld PR (1981) Nucleic Acids Res 9:7699–3270

    Google Scholar 

  • Zurawski G, Bohnert HI, Whitfeld PR, Bottomley W (1982a) Proc Natl Acad Sci USA 79:7699–7703

    Google Scholar 

  • Zurawski G, Bottomley W, Whitfeld PR (1982b) Proc Natl Acad Sci USA 79:6260–6264

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palmer, J.D., Osorio, B., Aldrich, J. et al. Chloroplast DNA evolution among legumes: Loss of a large inverted repeat occurred prior to other sequence rearrangements. Curr Genet 11, 275–286 (1987). https://doi.org/10.1007/BF00355401

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00355401

Key words

Navigation