Skip to main content
Log in

Growth and death rates of bovine embryonic kidney cells in turbulent microcarrier bioreactors

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bead-bead collisions have been characterized using the velocity of the smallest turbulent eddies to calculate a turbulent collision severity (defined as the energy of collisions times their frequency), but a shear-based collision mechanism with a different dependence on the system variables is also applicable. This shearbased mechanism and the ratio of smallest eddy size to microcarrier diameter can explain the beneficial effects of both smaller diameter microcarriers and higher viscosity of the medium on the growth rate of bovine embryonic kidney cells. Death rates of these cells have also been measured at several levels of agitation. The decrease in apparent growth rate from increasing agitation is caused both by a higher rate of cell death as well as a lower intrinsic growth rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

B :

unspecified biological variable

d cm:

bead diameter

d i cm:

impeller diameter

e :

error in estimate of power number

F n , F s (g·cm)/s2 :

normal and shear forces on a cell

Fr:

Froude number

g 980cm/s2 :

acceleration of gravity

k k−1 :

first order death rate constant

m g:

mass of a bead

n s−1 :

impeller rotational rate

n b :

number of impeller blades

N p :

impeller power number

R i cm:

impeller leading edge radius

TCS (g·cm2)/s3 :

turbulent collision severity

V cm3 :

reactor volume

v br cm/s rms:

relative velocity between beads

v e cm/s:

velocity in smallest eddies

X number of cells/cm3 :

cell population

α :

volume fraction microcarriers

γ s−1 :

shear rate

ε cm2/s3 :

turbulent power dissipation rate

η cm:

size of smallest eddies

μ g/(cm·s):

dynamic viscosity

μ h−1 :

apparent growth rate of cells

μ 0 h−1 :

intrinsic growth rate of cells in absence of death

v cm2/s:

kinematic viscosity

θ b g/cm3 :

bead density

θ f g/cm3 :

fluid density

τ g/(cm·s2):

shear stress

References

  1. Bethea, R. M.; Duran, B. S.; Boullion, T. L.: Statistical methods for engineers and scientists. New York: Dekker 1985

    Google Scholar 

  2. Cherry, R. S.; Papoutsakis, E. T.: Hydrodynamic effects on cells in agitated tissue culture reactors. Bioproc. Eng. 1 (1986) 29–41

    Google Scholar 

  3. Cherry, R. S.: Hydrodynamic mechanisms of cell damage in microcarrier bioreactors. Ph.D. dissertation, Dept. of Chemical Engineering, Rice University, Houston, TX. USA (August, 1987)

    Google Scholar 

  4. Cherry, R. S.; Papoutsakis, E. T.: Physical mechanisms of cell damage in microcarrier cell culture bioreactors. Biotechnol. Bioeng., in press (1988)

  5. Churchill, S. W.: The interpretation and use of rate data: the rate concept. New York: McGraw-Hill 1974

    Google Scholar 

  6. Croughan, M. S.: Hamel, J.-F.; Wang, D. I. C.: Hydrodynamic effects on animal cells grown in microcarrier cultures. Biotechnol. Bioeng. 29 (1987) 130–141

    Google Scholar 

  7. Croughan, M. S.; Hamel, J.-F.; Wang, D. I. C.: Effects of microcarrier concentration in animal cell culture. Biotechnol. Bioeng., in press (1988)

  8. Delichatsios, M. A.: Particle coagulation in steady turbulent flows: Application to smoke aging. J. Col. Interface Sci. 78 (1980) 163–174

    Google Scholar 

  9. Feder, J.; Tolbert, W. R.: The large scale culture of mammalian cells. Sci. Am 248 (1983) 36–43

    Google Scholar 

  10. Fleischaker, J. A., Jr.; Sinskey, A. J.: Oxygen demand and supply in cell culture. Eur. J. Appl. Microbiol. 12 (1981) 193–197

    Google Scholar 

  11. Glacken, M. W.; Fleishaker, R. J.; Sinskey, A. J.: Mammalian cell culture: engineering principles and scaleup. Trends Biotechnol. 1 (1983) 102–108

    Google Scholar 

  12. Hing, W. F.: Production of Autographa Californica nuclear polyhedrosis virus in cells from large-scale suspension cultures. In: Kurstak, E. (Ed.): Microbial and Viral Pesticides. New York: Marcell Dekker 1982

    Google Scholar 

  13. Hinze, J. O.: Turbulent fluid and particle interaction. Prog. Heat Mass Transfer 6 (1971) 433–452

    Google Scholar 

  14. Hu, W. S.: Quantitative and mechanistic analysis of mammalian cell cultivation on microcarriers. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (Sept. 1983)

    Google Scholar 

  15. Lehmann, J.; Piehl, G. W.; Shulz, R.: Bubble free cell culture aeration with porous moving membranes. Develop. biol. Standard. 66 (1987) 227–240

    Google Scholar 

  16. Margaritis, A.; Wallace, J. B.: Novel bioreactor systems and their applications. Bio/Technology 2 (1984) 447–453

    Google Scholar 

  17. Meiselman, H. J.; Cokelet, G. R.: Blood rheology. Adv. Microcirc. 5 (1973) 32–61

    Google Scholar 

  18. Midler, M.; Finn, R. K.: A model system for evaluating shear in the design of stirred fermenters. Biotechnol. Bioeng. 8 (1966) 72–84

    Google Scholar 

  19. Mizrahi, A.: Oxygen in human lymphoblastoid cell line cultures and effect of polymers in agitated and aerated cultures. Develop. biol. Standard. 55 (1984) 93–102

    Google Scholar 

  20. Nagata, S.: Mixing — principles and applications. New York: Halsted Press 1975

    Google Scholar 

  21. Oldshue, J. Y.: Fluid mixing technology. New York: McGrawHill 1983

    Google Scholar 

  22. Schulz, R.; Krafft, H.; Lehmann, J.: Experiments with a new type of microcarrier. Biotech. Letters 8 (1986) 557–560

    Google Scholar 

  23. Sinskey, A. J.; Fleishaker, R. J.; Tyo, M. A.; Giard, D.-J.; Wang, D. I. C.: Production of cell-derived products: virus and interferon. Ann. N. Y. Acad. Sci. 369 (1981) 47–59

    Google Scholar 

  24. Varani, J.; Dame, M.; Beals, T. F.; Wass, J. A.: Growth of three established cell lines on glass microcarriers. Biotechnol. Bioeng. 25 (1983) 1359–1372

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cherry, R.S., Papoutsakis, E.T. Growth and death rates of bovine embryonic kidney cells in turbulent microcarrier bioreactors. Bioprocess Engineering 4, 81–89 (1989). https://doi.org/10.1007/BF00373735

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00373735

Keywords

Navigation