Skip to main content
Log in

Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3″) (9)

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

The nucleotide sequence of the spc determinant of the Staphylococcus aureus transposon Tn554 has been determined. This gene encodes a spectinomycin adenyltransferase, AAD(9), that mediates resistance to spectinomycin but not to streptomycin. The sequence predicts a 260 amino acid protein of molecular weight 28,943. A spectinomycin-sensitive mutant (spc-1) contains a G→A transition resulting in substitution of threonine (ACA) for alanine (GCA) at residue 165. The predicted amino acid sequence is 36% homologous to that of a widely distributed, gramnegative streptomycin/spectinomycin adenyltransferase, AAD(3″) (9), specified by the aadA determinant (Holingshead and Vapnek 1985).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alwine JC, Kemp DJ, Parker BA, Reiser J, Renart J, Stark GR, Wahl GM (1979) Detection of specific RNAs or specific fragments of DNA by fractionation in gels and transfer to diazobenzyloxymethyl paper. Methods Enzymol 68:220–242

    Article  PubMed  CAS  Google Scholar 

  • Benveniste R, Davies J (1973) Aminoglycoside antibiotic-inactivating enzymes in actinomycetes similar to those present in clinical isolates of antibiotic-resistant bacteria. Proc Natl Acad Sci USA 70:2276–2280

    Article  PubMed  CAS  Google Scholar 

  • Berk AJ, Sharp PA (1977) Sizing and mapping of early adeno-virus mRNAs by gel electrophoresis of S1 endonuclease-digested hybrids. Cell 12:721–732

    Article  PubMed  CAS  Google Scholar 

  • Biggin MD, Gibson TJ, Hong GF (1983) Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci USA 80:3963–3965

    Article  PubMed  CAS  Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  PubMed  CAS  Google Scholar 

  • Courvalin P, Carlier C, Collatz E (1981) Evolutionary relationships between plasmid-mediated aminoglycoside-modifying enzymes from gram-positive and gram-negative bacteria. In: Gialdroni-Grassi G, Sabatti L (eds) New trends in antibiotics: Research and therapy. Elsevier/North Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Davies J, Smith DI (1978) Plasmid-determined resistance to antimicrobial agents. Annu Rev Microbiol 32:469–518

    Article  PubMed  CAS  Google Scholar 

  • Drassar FA (1978) Detection of aminoglycoside degrading enzymes. In: Reeves DS, Phillips I, Williams JD, Wise R (eds) Laboratory methods in antimicrobial chemotherapy. Churchill Livingstone, Edinburgh, pp 70–75

    Google Scholar 

  • Glisin V, Crkvenjakov R, Byus C (1974) Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry 13:2633–2637

    Article  PubMed  CAS  Google Scholar 

  • Hollingshead S, Vapnek D (1985) Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenyltransferase. Plasmid 13:17–30

    Article  PubMed  CAS  Google Scholar 

  • Iordanescu S (1976) Three distinct plasmids originating in the same Staphylococcus aureus strain. Arch Roum Pathol Exp Microbiol 35:111–118

    PubMed  CAS  Google Scholar 

  • Kawabe H, Tanaka T, Mitshuhashi S (1978) Streptomycin and spectinomycin resistance mediated by plasmids. Antimicrobial Agents Chemother 13:1031–1035

    CAS  Google Scholar 

  • Khan SA, Novick RP (1983) Complete nucleotide sequence of pT181 a tetracycline-resistance plasmid from Staphylococcus aureus. Plasmid 10:251–259

    Article  PubMed  CAS  Google Scholar 

  • Lehrach H, Diamond D, Wozney JM, Boedtker H (1977) RNA molecular weight determinations by gel electrophoresis under denaturing conditions, a critical reexamination. Biochemistry 16:4743–4751

    Article  PubMed  CAS  Google Scholar 

  • Maxam A, Gilbert W (1980) Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol 65:499–560

    Article  PubMed  CAS  Google Scholar 

  • McLaughlin JR, Murray CL, Rabinowitz JC (1981) Unique features in the ribosome binding site sequence of the gram-positive Staphylococcus aureus β-lactamase gene. J Biol Chem 256:11283–11291

    PubMed  CAS  Google Scholar 

  • Messing J (1983) New M13 vectors for cloning. Methods Enzymol 101:10–89

    Google Scholar 

  • Murphy E (1983) Inhibition of Tn554 transposition: deletion analysis. Plasmid 10:260–269

    Article  PubMed  CAS  Google Scholar 

  • Murphy E (1985) Nucleotide sequence of ermA, a macrolide-lineosamide-streptogramin B determinant in Staphylococcus avreus. J Bacteriol 162:633–640

    PubMed  CAS  Google Scholar 

  • Murphy E, Löfdahl S (1984) Transposition of Tn554 does not generate a target duplication. Nature 307:292–294

    Article  PubMed  CAS  Google Scholar 

  • Ozanne B, Benveniste R, Tipper D, Davies J (1969) Aminoglycoside antibiotics: inactivation by phosphorylation in Escherichia coli carrying R factors. J Bacteriol 100:1144–1146

    PubMed  CAS  Google Scholar 

  • Phillips S, Novick RP (1979) A site-specific repressor-controlled transposon in Staphylococcus aureus. Nature 278:476–478

    Article  PubMed  CAS  Google Scholar 

  • Rigby PWJ, Dieckmann M, Rhodes C, Berg P (1977) Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase. J Mol Biol 113:237–251

    Article  PubMed  CAS  Google Scholar 

  • Rosenberg M, Court D (1979) Regulatory sequences involved in the promotion and termination of RNA transcription. Annu Rev Genet 13:319–353

    Article  PubMed  CAS  Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Article  PubMed  CAS  Google Scholar 

  • Shine J, Dalgarno L (1974) The 3′ terminal sequence of Escherichia coli 16S ribosomal RNA: Complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci USA 71:1342–1346

    Article  PubMed  CAS  Google Scholar 

  • Suzuki I, Takahashi N, Shirato S, Kawabe H, Mitsuhashi S (1975) Adenylylation of streptomycin by Staphylococcus aureus: A new streptomycin adenylyltransferase. In: Mitsuhashi S, Hashimoto H (eds) Microbial Drug Resistance. University of Tokyo Press, pp 463–474

  • Thompson CJ, Gray GS (1983) Nucleotide sequence of a streptomycete aminoglycoside phosphotransferase gene and its relationship to phosphotransferases encoded by resistance plasmids. Proc Natl Acad Sci USA 80:5190–5194

    Article  PubMed  CAS  Google Scholar 

  • Tu C, Cohen SN (1980) 3′ end labeling of DNA with α-32P-cordycepin-5′-triphosphate. Gene 10:177–183

    Article  PubMed  CAS  Google Scholar 

  • Walker JB, Skorvaga M (1973) Phosphorylation of streptomycin and dihydrostreptomycin by Streptomyces. J Biol Chem 248:2435–2440

    PubMed  CAS  Google Scholar 

  • Yagasawa M, Davies J (1979) Possible homology between genes for two aminoglycoside nucleotidyltransferases, AAD(3″) and ANT(2″): An evolutionary relationship? J Antibiot (Tokyo) 32:250–253

    Google Scholar 

  • Yamada D, Tipper D, Davies J (1968) Enzymatic inactivation of streptomycin by R-factor resistant Escherichia coli. Nature 219:288–291

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by P. Starlinger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murphy, E. Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3″) (9). Molec. Gen. Genet. 200, 33–39 (1985). https://doi.org/10.1007/BF00383309

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00383309

Keywords

Navigation