Skip to main content
Log in

Effects of anaerobiosis on root metabolism of Zostera marina (eelgrass): implications for survival in reducing sediments

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The temperate seagrass Zostera marina L. typically grows in highly reducing sediments. Photosynthesis-mediated O2 supplied to below-ground tissues sustains aerobic respiration during photosynthetic periods. Roots, however, experience daily periods of anoxia and/or hypoxia at night and under conditions that reduce photosynthesis. Rhizosphere cores of Z. marina were collected in August 1984 from Great Harbor, Massachusetts, USA. We examined short-term anaerobic metabolism of [U-14C]sucrose in excised roots and roots of intact plants. Under anaerobic conditions roots showed appreciable labeling of CO2, ethanol and lactate, and slight labeling of alanine and other metabolites. Over 95% of the 14C-ethanol was recovered in the root exudate. Release of other metabolites from the roots was minimal. Ethanol was also released from hypoxic/anoxic roots of intact plants and none of this ethanol was transported to the shoot under any experimental conditions. Loss of ethanol from roots prevented tissue levels of this phytotoxin from increasing during anaerobiosis despite increased synthesis of ethanol. Anaerobic metabolism of [U-14C]glutamate in excised roots led to appreciable labelling of γ-aminobutyrate, which was known to accumulate in eelgrass roots. Roots recovered to fully aerobic metabolism within 4 h after re-establishment of aerobic conditions. The contributions of these root metabolic responses to the ability of Z. marina to grow in reducing marine sediments are related to light-regulated interactions of shoots and roots that likely dictate depth penetration, distribution and ecological success of eelgrass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Armstrong, W. (1978). Root aeration in the wetland conditions. In: Hook, D. D., Crawford, R. M. M. (eds.) Plant life in anaerobic environments. Ann Arbor Science Publishers Inc., Ann Arbor, p. 269–297

    Google Scholar 

  • Barta, A. L. (1984). Ethanol synthesis and loss from flooded roots of Medicago sativa L. and Lotus corniculatus L. Plant. Cell Envir. 7: 187–191

    Google Scholar 

  • Beer, S., Eshel, A., Waisel, Y. (1977). Carbon metabolism in seagrasses. I. The utilization of exogenous inorganic carbon species in photosynthesis. J. exp. Bot 28: 1180–1189

    Google Scholar 

  • Bertani, A., Brambilla, I. (1982): Effect of decreasing oxygen concentration on some aspects of protein and amino-acid metabolism in rice roots. Z. Pflanzenphysiol. 107: 193–200

    Google Scholar 

  • Bertani, A., Brambilla, I., Menegus, F. (1980). Effects of anaerobiosis on rice seedlings: growth, metabolic rate, and fate of fermentation products. J. exp. Bot. 31: 325–331

    Google Scholar 

  • Bertani, A., Brambilla, I., Menegus, F. (1981b). Effects of anaerobiosis on carbohydrate content in rice roots. Biochem. Physiol. Pflanz. 176: 835–840

    Google Scholar 

  • Bertani, A., Menegus, F., Bollini, R. (1981a). Some effects of anaerobiosis on protein metabolism in rice roots. Z. Pflanzenphysiol 103: 37–43

    Google Scholar 

  • Crawford, R. M. M. (1978). Metabolic adaptations to anoxia. In: Hook, D. D., Crawford, R. M. M. (eds.) Plant life in anaerobic environments. Ann Arbor Science Publishers Inc., Ann Arbor, p. 119–136

    Google Scholar 

  • Dacey, J. W. H. (1981). Pressurized ventilation in the yellow waterlily. Ecology 62: 1137–1147

    Google Scholar 

  • Davies, D. D. (1980) Anaerobic Metabolism and the production of organic acids. In: Stumpf, P. K., Conn, E. E. (eds.) The Biochemistry of Plants. Academic Press, London, p. 581–611

    Google Scholar 

  • Davies, D. D., Grego, S., Kenworthy, P. (1974). The control of the production of lactate and ethanol by higher plants. Planta 118: 297–310

    Google Scholar 

  • Dennison, W. C., Alberte, R. S. (1982). Photosynthetic responses of Zostera marina L. (eelgrass) to in situ manipulations of light intensity. Oecologia 55: 137–144

    Google Scholar 

  • Dennison, W. C., Alberte, R. S. (1985). Role of daily light period in the depth distribution of Zostera marina (Eelgrass). Mar. Ecol. Prog. Ser. 25: 51–62

    Google Scholar 

  • Drew, M. C. (1983). Plant injury and adaptation to oxygen deficiency in the root environment: A review. Plant and Soil 75: 179–199

    Google Scholar 

  • Fenchel, T. (1977). Aspects of the decomposition of seagrasses. In: McRoy, C. P., Helfferich, C. (eds.) Seagrass Ecosystem: A Scientific Perspective. Dekker, New York, p. 123–146

    Google Scholar 

  • Fensom, D. S., Thompson, R. G., Alexander, K. G. (1984). Stem anoxia temporarily interrupts translocation of 11C-photosynthate in sunflower. J. exp. Bot. 35: 1582–1594

    Google Scholar 

  • Fulton, J. M., Erickson, A. E., Tolbert, N. E. (1964). distribution of C14 among metabolites of flooded and aerobically grown tomato plants. Agron. J. 56: 527–529

    Google Scholar 

  • Iizumi, H., Hattori, A., McRoy, C. P. (1980). Nitrate and nitrite in interstitial waters of eelgrass beds in relation to the rhizosphere. J. exp. mar. Biol. Ecol. 47: 191–201

    Google Scholar 

  • Jackson, M. B., Drew, M. C. (1984). Effects of flooding on growth and merabolism of herbaceous plants. In: Koulowski, T. T. (ed.) Flooding and Plant Growth. Academic Press, London, p 47–128

    Google Scholar 

  • Joshi, M. M., Hollis, J. P. (1977). Interaction of Beggiatoa and rice plant: Detoxification of hydrogen sulfide in the rice rhizosphere. Science, N.Y. 195: 179–180

    Google Scholar 

  • Lambers, H. (1985). Respiration in intact plants and tissues: Its regulation dependence on environmental factors, metabolism and invaded organisms. In: Douce, R., Day, D. A. (eds.) Higher Plant Cell Respiration, Encycl. Plant Physiol. Vol. 18, Springer-Verlag, Berlin, p. 418–474

    Google Scholar 

  • Lüttge, U., Kluge, M., Greenway, H. (1977). Effects of water and turgor potential on malate efflux from leaf slices of Kalanchoë diagremontiana. Plant Physiol. 60: 521–523

    Google Scholar 

  • McManmon, M., Crawford, R. M. M. (1971). A metabolic theory of flooding tolerance: the significance of enzyme distribution and behavior. New Phytol. 70: 99–306

    Google Scholar 

  • McRoy, C. P., McMillan, C. (1977). Production ecology and physiology of seagrasses. In: McRoy, C. P., Helfferich, L. (eds.) Seagrass ecosystems: a scientific perspective. Dekker, New York, p. 53–88

    Google Scholar 

  • Mendelssohn, I. A., McKee, K. L., Patrick, W. H. (1981). Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia. Science, N.Y. 214: 439–441

    Google Scholar 

  • Penhale, P. A., Wetzel, R. G. (1983). Structural and functional adaptations of eelgrass (Zostera marina L.) to the anaerobic sediment environment. Can. J. Bot. 61: 1421–1428

    Google Scholar 

  • Peterson, G. L. (1983). Determination of total protein. In: Hirs, C. H. W., Timasheff, S. N. (eds.) Methods in Enzymology. Vol. 91. Academic Press. London, p. 95–119

    Google Scholar 

  • Pregnall, A. M., Smith, R. D., Alberte, R. S. (1987). Glutamine synthetase activity and free amino acid pools of eelgrass (Zostera marina L.) roots. J. exp. mar. Biol. Ecol. 106: 211–228

    Google Scholar 

  • Pregnall, A. M., Smith, R. D., Kursar, T. A., Alberte, R. S. (1984). Metabolic adaptation of Zostera marina (eelgrass) to diurnal periods of root anoxia. Mar. Biol. 83: 141–147

    Google Scholar 

  • Roberts, J. K. M., Callis, J., Jardetzky, O., Walbot, V., Freeling, M. (1984b). Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc. ntn. Acad. Sci. U.S.A. 81: 6029–6033

    Google Scholar 

  • Roberts, J. K. M., Callis, J., Wemmer, D., Walbot, V., Jardetzky, O. (1984a). Mechanism of cytoplasmic pH regulation in hypoxic maize root tips and its role in survival under hypoxia. Proc. ntn. Acad. Sci., U.S.A. 81: 3379–3383

    Google Scholar 

  • Rumpho, M. E., Kennedy, R. A. (1983). Activity of the pentose phosphate and glycolytic pathways during anaerobic germinatioin of Echinochloa crusgalli (barnyard grass) seeds. J. exp. Bot. 34: 893–902

    Google Scholar 

  • Saglio, P. H. (1985). Effect of path or sink anoxia on sugar translo cation in roots of maize seedlings. Plant Physiol. 77: 285–290

    Google Scholar 

  • Saglio, P. H., Pradet, A. (1980). Soluble sugars, respiration, and energy charge during aging of excised maize root tips. Plant Physiol 66: 516–519

    Google Scholar 

  • Saglio, P. H., Raymond, P., Pradet, A. (1980). Metabolic activity and energy charge of excised maize root tips under anoxia. Plant Physiol 66: 1053–1057

    Google Scholar 

  • Sand-Jensen, K., Prahl, C., Stockholm, H. (1982). Oxygen release from roots of submerged aquatic macrophytes. Oikos 38:349–354

    Google Scholar 

  • Schink, B., Phelps, T. J., Eichler, B., Zeikus, J. G. (1985). Comparison of ethanol degradation pathways in anoxic freshwater environments. J. gen. Microbiol. 131: 651–660

    Google Scholar 

  • Smith, R. D., Dennison, W. C., Alberte, R. S. (1984). Role of seagrass photosynthesis in root aerobic processes. Plant Physiol. 74: 1055–1058

    Google Scholar 

  • Smith, A. M., Rees ap, T. (1979a). Effects of anaerobiosis on carbohydrate oxidation by roots of Pisum sativum. Phytochemistry 18: 1453–1458

    Google Scholar 

  • Smith, A. M., Rees ap, T. (1979b). Pathways of Carbohydrate fermentation in the roots of marsh plants. Planta 146: 327–334

    Google Scholar 

  • Streeter, J. G., Thompson, J. F. (1972a). Anaerobic accumulation of γ-amino butyric acid and alanine in radish leaves (Raphanus sativus L.) Plant Physiol 49: 572–578

    Google Scholar 

  • Streeter, J. G., Thompson, J. F. (1972b). in vivo and in vitro studies on γ-amino butyric acid metabolism with radish leaves (Raphanus sativus L.). Plant Physiol 49: 579–584

    Google Scholar 

  • Thursby, G. B. (1984). Root-exuded oxygen in the aquatic angiosperm Ruppia maritima. Mar. Ecol. Prog. Ser. 16: 303–305

    Google Scholar 

  • Vartepatian, B. B., Andreeva, I. N., Kozlova G. I., Agapova, L. P. (1977). Mitochondrial ultrastructure in roots of mesophytes and hydrophyte at anoxia and after glucose feeding. Protoplasma 91: 243–256

    Google Scholar 

  • Witt, I. (1974). Ethanol. Determination with alcohol dehydrogenase and 3-acetylpyridine analogue of NAD (APAD). In: Bergmever, H. U. (ed.) Methods of enzymatic analysis. 2nd ed. Vol. 3, Verlag Chemie, Weinheim, p. 1502–1505

    Google Scholar 

  • Zemlianukhin, A. A., Ivanov, B. F. (1978). Metabolism of organic acids of plants in the conditions of hypoxia. In: Hook, D. D., Crawford, R. M. M. (eds.) Ann Arbor Science Publishers Inc., Ann Aebor, p. 203–268

    Google Scholar 

  • Zimmerman, R. C., Smith, R. D., Alberte, R. S. (1987). Is growth of eelgrass nitrogen limited? A numerical simulation of the effects of light and nitrogen on the growth dynamics of Zostera marina. Mar. Ecol. Prog. Ser. 41: 167–176

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by J.P. Grassle, Woods Hole

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, R.D., Pregnall, A.M. & Alberte, R.S. Effects of anaerobiosis on root metabolism of Zostera marina (eelgrass): implications for survival in reducing sediments. Marine Biology 98, 131–141 (1988). https://doi.org/10.1007/BF00392668

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00392668

Keywords

Navigation