Skip to main content
Log in

Metabolic engineering of sugar catabolism in lactic acid bacteria

  • Metabolism
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Lactic acid bacteria are characterized by a relatively simple sugar fermentation pathway that, by definition, results in the formation of lactic acid. The extensive knowledge of traditional pathways and the accumulating genetic information on these and novel ones, allows for the rerouting of metabolic processes in lactic acid bacteria by physiological approaches, genetic methods, or a combination of these two. This review will discuss past and present examples and future possibilities of metabolic engineering of lactic acid bacteria for the production of important compounds, including lactic and other acids, flavor compounds, and exopolysaccharides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams RM, Youas S, Mainzer SE, Moon K, Palombella AL, Estell DA, Power SD & Schmidt BF (1994) Characterization of two cold-sensitive mutants of the β-galactosidase from Lactobacillus delbrueckii susp. bulgaricus. J. Biol. Chem. 269: 5666–5672

    Google Scholar 

  • Alpert CA & Chassy B (1990) Molecular cloning and DNA sequence of lacE, the gene encoding the lactose-specific Enzyme II of the phosphotransferase system of Lactobacillus casei: Evidence that a cysteine residue is essential for sugar phosphorylation. J. Biol. Chem. 265: 22561–22570

    Google Scholar 

  • Anderson DG & McKay (1984) In vivo cloning of lac genes in Streptocococus lactis ML3. Appl. Environ. Microbiol. 47: 245–249

    Google Scholar 

  • Archibald FS & Fridovich I (1981) Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J. Bacteriol. 146: 928–936

    Google Scholar 

  • Bernard N, Johnson K, Ferain T, Garmyn D, Hols P, Holbrook JJ & Delcour J (1994) NAD+-dependent D-2-hydroxyisocaproate dehydrogenase of Lactobacillus delbrueckii subsp. bulgaricus. Gene cloning and enzyme characterization. Eur. J. Biochem. 224: 439–446

    Google Scholar 

  • Benson KK, Godon JJ, Renault P, Griffin HG & Gasson MJ (1996) Effect of ilvBN-encoded α-acetolactate synthase expression on diacetyl production in Lactococcus lactis. Appl. Microbiol. Biotechnol. 45: 107–111

    Google Scholar 

  • Boyd DA, Cvitkovitch DG & Hamilton IR (1994) Sequence and expression of the genes for HPr (ptsH) and enzyme I (ptsI) of the phosphoenolpyruvate-dependent phosphotransferase transport system from Streptocococus mutants. Infect. Immunol. 62: 1156–1165

    Google Scholar 

  • Bouffard GG, Rudd KK & Adhya SL (1994) Dependence of lactose metabolism upon mutarotase encoded in the gal operon in Escherichia coli. J. Mol. Biol. 244: 269–278

    Google Scholar 

  • Bocker G, Stolz P & Hammes (1994) Progress in sourdough fermentation. In: Lactic 94 (Novel G & Le Querler) pp. 133–143. Adria Normandie and University of Caen, France

    Google Scholar 

  • Catzeddu P, Vaughan EE, Deiana P & de Vos WM (1996) Transcriptional regulation and mutations that activate expression of the galactose operon in Streptococcus thermophilus. (Submitted)

  • Condon S (1987) Responses of lactic acid bacteria to oxygen. FEMS Microbiol. Rev. 46: 269–280

    Google Scholar 

  • Cerning J (1990) Extracellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol. Rev. 87: 113–130

    Google Scholar 

  • Chen A, Hillman JD & Duncan M (1994) L-(+)-Lactate dehydrogenase deficiency is lethal in Streptococcus mutans. J. Bacteriol. 76: 1542–1545

    Google Scholar 

  • Crow VL & Thomas (1984) Properties of a Streptococcus lactis strain that ferments lactose slowly. J. Bacteriol. 157: 28–34

    Google Scholar 

  • de Ruyter PGGA, Kuipers OP, Beerthuyzen MM, van Alen-Boerrigter IJ & de Vos WM (1996) Functional analysis of promoters in the nisin gene cluster of Lactococcus lactis. J. Bacteriol. 178 (12) (in press)

  • Deutscher J & Sauerwald H (1986) Stimulation of dihydroxyacetone and glycerol kinase activity in Streptococcus faecalis by phosphoenolpyruvate-dependent phosphotransferase-dependent phosphorylation catalyzed by enzyme I and HPR of the phosphotransferase system. J. Bacteriol. 166: 829–836

    Google Scholar 

  • Deutscher J, Kuster E, Bergstedt U, Charrier V & Hillen W (1995) Protein-kinase dependent HPr/CcpA interaction links glycolytic activity to carbon catabolite repression in Gram-positive bacteria. Mol. Microbiol. 15: 1049–1053

    Google Scholar 

  • De Vos WM & Gasson MJ (1989) Structure and expression of the Lactococcus lactis gene for phospho-β-galactosidase. J. Gen. Microbiol. 132: 331–340

    Google Scholar 

  • De Vos WM, Boerrigter I, van Rooijen RJ, Reiche B & Hengstenberg W (1990) Characterization of the lactose-specific enzymes of the phosphotransferase system in Lactococcus lactis. J. Biol. Chem. 265: 22554–22560

    Google Scholar 

  • De Vos WM & Simons G (1994) Gene cloning and expression systems in lactococci. pp. 52–105, in: Genetics and Biotechnology of Lactic Acid Bacteria (Gasson MJ & de Vos WM, Eds.) Chapman & Hall, London, UK

    Google Scholar 

  • De Vos WM & Vaughan EE (1994) Genetics of lactose utilization in lactic acid bacteria. FEMS Microbiol. Rev. 15: 217–237

    Google Scholar 

  • De Vos WM, Beerthuyzen MM, Luesink EL & Kuipers OP (1995) Genetics of the nisin operon and the sucrose-nisin conjugative transposon Tn5276. Dev. Biol. Stand. 85: 617–627

    Google Scholar 

  • Doco T, Wieruzeski J.-M & Fournet B (1990) Structure of an exocellular polysaccharide produced by Streptococcus thermophilus. Carbohydr. Res., 198: 313–321

    Google Scholar 

  • Driessen AJM, Poolman B, Kiewiet R & Konings WN (1987) Arginine transport in Streptococcus lactis is driven by a cationic exchanger. Proc. Natl. Acad. Sci. USA 84: 6093–6097

    Google Scholar 

  • Duncan MJ & Hillman JD (1991) DNA sequence and in vitro mutagenesis of the gene encoding the fructose 1,6 diphosphate-dependent L-(+)lactate dehydrogenase of Streptococcus mutans. Infect. Immunol. 59: 3930–3934

    Google Scholar 

  • Fahey RC, Brwon WC, Adams WB & Worsham MB (1978) Occurence of glutathione in bacteria. J. Bacteriol. 133: 1126–1129

    Google Scholar 

  • Fath MJ & Kolter R (1993) ABC exporters. Microbiol. Rev. 57: 995–1017

    Google Scholar 

  • Ferain T, Garmyn D, Bernard N, Hols P & Delcour J (1994) Lactobacillus plantarum ldhL gene: overexpression and deletion. J. Bacteriol. 176: 596–601

    Google Scholar 

  • Ferain T, Hobbs Jr JN, Richardson J, Bernard N, Garmyn D, Hols P, Allen NE & Delcour J C (1996a) Genetic analysis of vancomycin resistance in Lactobacillus plantarum: disruption of ldhD and ldhL genes. (Submitted)

  • Ferain T, Schanck AN, Veiga da Cunha M & Delcour J (1996b) Distribution of end products from glucose and citrate metabolism in a Lactobacillis plantarum strain deficient for lactate dehydrogenase. (Submitted)

  • Gagnon G, Vandeboncoeur C Levesque RC & Frenette M (1992) Cloning, sequencing and expression in Escherichia coli of the ptsI gene encoding enzyme I of the phosphoenolpyruvate: sugar phosphotransferase transport system from Streptococcus salivarius. Gene 121: 71–78

    Google Scholar 

  • Gagnon G, Vandeboncoeur C & Frenette M (1993) Phosphotransferase system of Streptococcus salivarius: characterization of the pstH gene and its product. Gene 136: 27–34

    Google Scholar 

  • Gasson MJ & de Vos WM (1994) Genetics and Biotechnology of Lactic Acid Bacteria. Chapmann & Hall, Glasgow, UK

    Google Scholar 

  • Gasson MJ, Benson K, Swindell S, Griffin H (1996) Metabolic engineering of the Lactococcus lactis diacetyl pathway. Le Lait 75: 33–40

    Google Scholar 

  • Garmyn D, Ferain T, Bernard N, Hols P, Holbrook J & Delcour (1995) Cloning, nucleotide sequence and transcriptional analysis of the L-lactate dehydrogenase gene from Pediococcus acidilactici. Appl. Environ. Microbiol. 61: 266–272

    Google Scholar 

  • Germond JE, Lapierre L, Delley M & Mollet B (1995) A new mobile genetic element in Lactobacillus delbrueckii subsp. bulgaricus. Mol. Gen. Genet. 248: 407–416

    Google Scholar 

  • Godon JJ, Delorme C, Bardowski J, Chopin MC, Ehrlich SD & Renault P (1993) Gene inactivation in Lactococus lactis: branched chain animo acid biosynthesis. J. Bacteriol. 175: 4383–4390

    Google Scholar 

  • Griffin HG, Swindell SR & Gasson (1992) Cloning, and sequence analysis of the gene encoding L-lactate dehydrogenase from Lactococcus lactis: evolutionary relationships between 21 diffrent LDH enzymes. Gene 122: 193–197

    Google Scholar 

  • Hammes WP, Bantleon A, Min S (1990) Lactic acid bacteria in meat fermentation. FEMS Microbiol. Rev. 87: 165–174

    Google Scholar 

  • Higuchi M, Shimada M, Matsumoto J, Yamamoto Y, Rhaman A & Kamio (1994) Molecular cloning and sequence analysis of the gene encoding the H2O2-forming NADH oxidase from Streptococcus mutans. Biosci. Biotech. Biochem. 58: 1603–1607

    Google Scholar 

  • Higuchi M, Matsumoto, Shimada M, Yamamoto Y & Kamio Y (1995) Occurrence of the NADH oxidases corresponding to H2O2-forming oxodase and H2O-forming oxidase among species of oral and non-oral streptococci. Oral. Microbial. Immunol. (in press)

  • Hillman JD, Chen A, Duncan M & Lee SW (1994) Evidence that L-(+)-lactate dehydrogenase deficiency is lethal in Streptococcus mutans. Infect Immunol. 62: 60–64

    Google Scholar 

  • Hueck C & Hillen W (1995) Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria?. Mol. Microbiol. 15: 395–401

    Google Scholar 

  • Hugenholtz J, Perdon L & Abee T (1993) growth and energy generation by Lactococcus lactis subsp. lactis biovar diacetylactis during citrate metabolism. Appl. Environ. Microbiol. 59: 4216–4222

    Google Scholar 

  • Hugenholtz J (1993) Citrate metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 12: 165–178

    Google Scholar 

  • Hugenholtz J, Decates R, Simons G, Starreburg MJC & de Vos WM (1996) Increased ethanol production by metabolic engineering of Lactococcus lactis. (Submitted)

  • Hutkins RW & Morris HA (1987) Carbohydrate metabolism by Streptococcus thermophilis: A review. J. Food Protect. 50: 876–884

    Google Scholar 

  • Hutkins RW, Morris HA & McKay LL (1985) Galactokinase activity in Streptococcus thermophilus. Appl. Environ. Microbiol. 50: 777–780

    Google Scholar 

  • Ingram LO, Eddy CK, MacKenzie KF, Conway T, Altherthum (1989) Genetics of Zymomonas mobilis and ethanol production. Dev. Ind. Microbiol. 30: 53–69

    Google Scholar 

  • Jensen PR, Michelsen O & Westerhoff HV (1993) Control analysis of the depedence of Escherichia coli physiology on the H+-ATPase. Proc. Natl. Acad. Sci. 90: 8068–8072

    Google Scholar 

  • Jensen PR, van der Gugten AA, van Heeswijk WC, Rohwer J, Molenaar D, van Workum M, Richard P, Teusink B, Bakker BM, Kholodenko BN & Westerhoff HV (1995) Hierarchies in control. J. Biol. Sys. 3: 139–144

    Google Scholar 

  • Kell DB & Westerhoff HV (1986) Metabolic control theory: its role in microbiology and biotechnology. FEMS Microbiol. Rev. 39: 305–320

    Google Scholar 

  • Kim SF, Baek SJ & Pack MY (1991) Cloning and nucleotide sequence of the Lactobacillus casei lactate dehydrogenase gene. Appl. Environ. Microbiol. 57: 2431–2417

    Google Scholar 

  • Konings WN, Lolkema JS & Poolman B (1995) The generation of metabolic energy by solute transport. Arch. Microbiol. 164: 235–242

    Google Scholar 

  • Knauf HJ, Vogel RF & Hammes WP (1992) Cloning, sequencing, and phenotypic expression of katA, which encodes the catalase of Lactobacillus sake LTH677. Appl. Environ. Microbiol. 58: 832–829

    Google Scholar 

  • Kochhar S, Chuar N & Hottinger H (1992) Cloning and overexpression of the the Lactobacillus bulgaricus NAD-dependent D-lactate dehydrogenase gene in Escherichia coli: purification and characterization of the recombinant protein. Biophys. Biochem. Res. Comm. 185: 705–712

    Google Scholar 

  • Kuster E, Luesink EJ, de Vos WM & Hillen W (1996) Immunoloical cross-reactivity to catabolite control protein CcpA from B. megaterium is found in many Gram-positive bacteria. FEMS Microbiol Lett, (in press)

  • Kuipers OP, Beerthuyzen MM, de Ruyter PGGA, Luesink EJ & de Vos WM (1995) Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. J. Biol. Chem. 270: 27229–27304

    Google Scholar 

  • Law J, Buist G, Haandrikman A, Kok J, Venema G & Leenhouts K (1995) A system to generate chromosomal mutations in Lactococcus lactis which allows fast analysis of targeted genes. J. Bacteriol. 177: 7011–7018

    Google Scholar 

  • Llanos RM, Hillier AJ & Davidson BE (1992) Cloning, nucleotide sequence, expression and chromosomal location of ldh, the gene encoding L-(+)-lactate dehydrogenase from Lactococcus lactis. J. Bacteriol. 174: 6956–6964

    Google Scholar 

  • Llanos RM, Marin CJ, Hillier AJ & Davidson BE (1993) Identification of a novel operon in Lactococcus lactis encoding enzymes for lactic acid synthesis: phosphofructokinase, pyruvate kinase and lactate dehydrogenase. J. Bacteriol. 175: 254–255

    Google Scholar 

  • Limsowtin GKY, Davey GP & Crow VL (1986) Effect of gene dosage on expression of lactose enzymes in Streptococcus lactis. N.Z. Dairy Sci. Technol. 21: 151–156

    Google Scholar 

  • Leong-Morgenthaler P, Zwahlen MC and Hottinger H (1991) Lactose metabolism in Lactobacillus bulgaricus: analysis of the primary structure and expression of the genes involved. J. Bacteriol. 173: 1951–1957

    Google Scholar 

  • Lerch H-P, Blocker H, Kallwas H, Hoppe J, Tsai H & Collins J (1989a) Cloning, sequencing and expression in Escherichia coli of the 2-D-hydroxycaproate dehydrogenase gene of Lactobacillus casei. Gene 78: 47–57

    Google Scholar 

  • Lerch H-P, Frank R H & Collins J (1989b) Cloning, sequencing and expression of the 2-D-hydrocxycaproate dehydrogenase-encoding gene of Lactobacillus confusus in Escherichia coli. Gene 83: 263–270

    Google Scholar 

  • Lokman BC, Leer RJ, van Sorge R & Pouwels (1994) Promoter analysis and transcriptional regulation of Lactobacillus pentosus genes involved in xylose catabolism. Mol. Gen. Genet. 245: 117–125

    Google Scholar 

  • London J (1990) Uncommon pathways of metabolsim among lactic acid bacteria. FEMS Microbiol. Rev. 87: 103–112

    Google Scholar 

  • Mainzer SE, Yoast S, Palombella A, Adams Silva S, Pooman B, Chassy BM, Biozet B & Schmidt BF (1990) Pathway engineering of Lactobacillus bulgaricus for improved yoghurt. pp. 41–54. In: R.C. Chandan (ed.) Yoghurt: Nutritional and Health Properties. National Yoghurt Association, Virginia, US

    Google Scholar 

  • Marugg JD, Goelling D, Stahl U, Ledeboer AM, Toonen MY, Verhue WM & Verrips CT (1994) Identification and characterization of the α-acetolactate synthase gene from Lactococcus lactis subsp. lactis biovar. diacetylactis. Appl. Environ. Microbiol. 60: 1390–1394

    Google Scholar 

  • Marugg JD, van Kranenburg R, Laverman P, Rutten GA & de Vos WM (1996) Identical transcriptional control of the divergently transcribed prtP and prtM genes that are required for proteinase production in Lactococcus lactis. J. Bacteriol. 178: 1525–1531

    Google Scholar 

  • Marty-Teysset C, Posthuma C, Lolkema JS, Schmitt P, Divies C & Konings WN (1996) Proton motive force generation by citrolactic fermentation in Leuconostoc mesenteroides. J. Bacteriol. 178: 2178–2185

    Google Scholar 

  • Matsumoto J, Higichi M, Shimada M, Yamamoto Y & Y Kamio (1996) Molecular cloning and sequence analysis of the gene encoding the H2O-forming NADH oxidase gene from Streptococcus mutans. Biosci. Biotech. Biochem. 60: 39–43

    Google Scholar 

  • McKay LL & Baldwin KA (1974) Altered metabolism of Streptococcus lactis C2 deficient in lactate dehydrogenase. J. Dairy Sci. 57: 181–186

    Google Scholar 

  • Minowa T, Iwata S, Sakai H, Masaki H & Ohta T (1989) Sequence and characteristics of the Bifidobacterium longum gene encoding L-lactate dehydrogenase and the primary structure of the enzyme: a new feature of the allosteric site. Gene 85: 161–168

    Google Scholar 

  • Mollet B & Delley M (1990) Spontaneous deletion formation within the β-galactosidase gene of Lactobacillus bulgaricus. J. Bacteriol. 172: 5670–5676

    Google Scholar 

  • Mollet B & Delley M (1991) A β-galactosidase deletion mutant of Lactobacillus bulgaricus reverts to an active enzyme by internal DNA sequence duplication. Mol. Gen. Genet. 227, 17–21

    Google Scholar 

  • Mollet B & Hottinger H (1992) Yoghurt contenant de microorganismes vivants. European Patent Application 0 518 096

  • Nakyama K (1994) Nucelotide sequence of Streptococcus mutans superoxide dismutase gene and isolation of insertion mutants. J. Bacteriol. 174: 4928–4934

    Google Scholar 

  • Nakajima H, Hirota T, Toba T & Adachi S (1992) Structure of the extracellular polysacharide from slime-forming Lactococcus lactis subsp. cremoris SBT 0495. Carbohydr. Res. 224: 245–253

    Google Scholar 

  • Otto R, Lageveen RG, Veldkamp H & Konings (1980) Generation of an electrochemical proton gradient in membrane vesicles of Streptococcus cremoris. Proc. Natl. Acad. Sci. USA 77: 5502–5506

    Google Scholar 

  • Parker MW & Blake CCF (1988) Iron-and manganese-containig superoxide dismutates can be distinguished by analysis of their primary structures. FEBS Lett. 229: 377–382

    Google Scholar 

  • Parsonage D, Miller H, Ross RP & Claiborne A (1994) Purification and analysis of streptococcal NADH peroxidase expressed in Escherichia coli. J. Biol. Chem. 268: 3161–3167

    Google Scholar 

  • Pebay M, Holl A-C, Simonet J-M, Decaris B (1995) Characterization of the gor gene of the lactic acid bacterium Streptococcus thermophilus CNRZ368. Res. Microbiol. 146: 317–383

    Google Scholar 

  • Platteeuw C, Hugenholtz J, Starrenburg M, van Alen-Boerrigter IJ & de Vos WM (1995) Metabolic engineering of Lactococcus lactis: Influence of the overproduction of α-acetolactate synthase in strains deficient in lactate dehyrogenase as a function of culture conditions. Appl. Environ. Microbiol. 61: 3967–3971

    Google Scholar 

  • Poolman B (1993) Energy transduction in lactic acid bacteria. FEMS Microbiol. Rev. 12: 125–148

    Google Scholar 

  • Poolman B, Royer TJ, Mainzer SE & Schmidt B.F. (1989) Lactose transport system of Streptococcus thermophilus: a hybrid protein with homology to the melibiose carrier and enzyme III of phosphoenolpyruvate-dependent phophotransferase systems. J. Bacteriol. 171: 244–253

    Google Scholar 

  • Poolman B, Royer TJ, Mainzer SE & Schmidt BF (1990) Carbohydrate utilization in Streptococcus thermophilus: characterization of the genes for aldose 1-epimerase (mutarotase) and UDPglucose 4-epimerase. J. Bacteriol. 172: 4037–4047

    Google Scholar 

  • Poolman B, Knol J, Mollet B, Nieuwenhuis B & Sulter G (1995) Regulation of bacterial sugar-H+ symport by phosphoenolpyruvate-dependent enzyme I/HPr-mediated phosphorylation. Proc. Natl. Acad. Sci. USA 92: 778–782

    Google Scholar 

  • Poolman B, Knol J, van der Does C, Henderson PJF, Liang W-J, Leblanc G, Potcher T & Mus-Veteau I (1996) Cation and sugar selectivity determinants in a novel family of transport proteins. Mol. Microbiol. 19: 911–922

    Google Scholar 

  • Postma PW, Lengeler JW & Jacobson GR (1993) Phosphoenolpyruvate-dependent carbohydate phosphotransferase systems of bacteria. Microbiol. Rev. 57: 543–594

    Google Scholar 

  • Rauch PJG & de Vos WM (1992) Characterization of the novel nisin-sucrose cojugative transposon Tn5276 and its insertion in Lactococcus lactis. J. Bacteriol. 174: 1280–1287

    Google Scholar 

  • Reizer J (1989) Regulation of sugar uptake ands efflux in grampositive bacteria. FEMS Microbiol. Rev. 63: 149–157

    Google Scholar 

  • Reizer J, Sutrina SL, Saier MH, Stewart GC, Peterkofsy A & Reddy P (1989) Mechanistic and physiological consequence of HPr(Ser) phosphorylation on the activities of the phosphoenolpyruvate: sugar phosphotransferase system in gram-positive bacteria: studies with site-specific mutants of HPr. EMBO J 8: 2111–2120

    Google Scholar 

  • Reeves PR (1994) Biosynthesis and asembly of lipopolysaccharide. New. Compr. Biochem. 27: 281–314

    Google Scholar 

  • Rosey EL and Stewart G (1993) Nucelotide and deduced amino acid sequences of the lacR, lacABCD, and lacFE genes encoding the repressor, tagatose-6-phosphate gene cluster, and sugar-specific phosphotransferase system components of the lactose operon of Streptococcus mutans. J. Bacteriol. 174: 6159–6170

    Google Scholar 

  • Ross RP & Claiborne A (1991) Cloning, sequence and overexpression of the NADH peroxidase from Streptococcus faecalis 10C1. Structural relationship with the flavoprotein disulfide reductases. J. Mol. Biol. 221: 857–871

    Google Scholar 

  • Ross RP & Claiborne A (1992) Molecular cloning and analysis of the gene encoding the NADH oxidase from Streptococcus faecalis 10C1. Comparison with NADH peroxidase and the flavoprotein disulfide reductases. J. Mol. Biol. 227: 658–671

    Google Scholar 

  • Ross RP & Claiborne A (1996) Analysis of the OxyR-binding site associated with the NADH peroxidase gene in Enterococcus faecalis 10C1. (Submitted)

  • Roy DG, Klaenhammer TR & Hassan HM (1993) Cloning and expression of the manganese superoxide dismutase gene of Escherichia coli in Lactococcus lactis and Lactobacillus gasseri (1994) Mol. Gen. Genet. 239: 33–40

    Google Scholar 

  • Russell RRB, Adus-Opoku J, Sutcliffe IC, Tao L & Ferretti JJ (1992) A binding-protein dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism. J. Biol. Chem. 267: 4631–4637

    Google Scholar 

  • SaierJr MH, Ye JJ, Klinke S & Nino E (1996) Identification of an anaerobically induced phosphoenolpyruvate dependent fructosespecific phosphotransferase system and evidence for the Embden-Meyerhof glycolytic pathway in the heterofermentative bacterium Lactobacillus brevis. J. Bacteriol. 178: 314–316

    Google Scholar 

  • Sato Y, Poy F, Jacobson GR & Kuramitsu (1989) Characterization and sequence analysis of the scrA gene encoding enzyme IIscr of the Streptococcus mutans phosphoenolpyruvate-dependent sucrose phosphotransferase system. J. Bacteriol. 171: 263–271

    Google Scholar 

  • Sanders JW, Leenhouts K, Haandrikman AJ, Venema G & Kok J (1995) Stress response in Lactococcus lactis: Cloning, expression analysis and mutation of the lactococcal superoxide dismutase gene. J. Bacteriol. 177: 5254–5260

    Google Scholar 

  • Sasaki T, Ito Y & Sasaki Y (1993a) Electrotransformation of Lactoibacillus delbrieckii subsp. bulgaricus. In: W.M. de Vos, J. Huis in ‘t Veld & B. Poolman (Eds.) FEMS Microbiol. Rev. 12: P8

  • Sasaki Y, Ito Y & Sasaki T (1993b) Gene conversion in transconjugants of Lactobacillus delbruecki subsp. bulgaricus using pAMß1 as an integration vector. In: W.M. de Vos, J. Huis in t Veld & B. Poolman (Eds.) FEMS Microbiol. Rev. 12:P9

  • Schroeder CJ, Robert C, Lenzen G, McKay LL, and Mercienier A (1991) Analysis of the lacZ sequences from two Streptococcus thermophilus strains: comparison with the Escherichia coli and Lactobacillus bulgaricus ß-galactosidase sequences. J. Gen. Microbiol. 137: 369–380

    Google Scholar 

  • Smart JB & Thomas TD (1987) Effect of oxygen on lactose metabolism in lactic streptococci. Appl. Environ. Microbiol. 53: 533–541

    Google Scholar 

  • Schmidt BF, Adams RM, Requadt C, Power S & Mainzer SE (1989) Expression and nucleotide sequence of the Lactobacillus bulgaricus ß-galactosidase gene cloned in Escherichia coli. J. Bacteriol. 171: 625–635

    Google Scholar 

  • Snoep JL (1992) Regulation of pyruvate catabolism in Enterococcus faecalis. A molecular aproach to physiology. Academic Thesis, University of Amsterdam, Amsterdam

    Google Scholar 

  • Snoep JL, Teixeira de Mattos MJ & Neijssel OM (1991) Effect of the energy source on the NADH/NAD ratio and on pyruvate catabolism in anaerobic chemostrat cultures of Enterococcus faecalis NTC 775. FEMS Microbiol. Lett. 81: 63–66

    Google Scholar 

  • Snoep MJ, Teieira de Mattos MJ, Starrenburg MJC & Hugenholtz J (1992) Isolation, characterization and physiological role of the pyruvate dehydrogenase complex and α-acetolactate synthase of Lactococcus lactis subsp. lactis var. diacetylactis. J. Bacteriol. 174: 4838–4841

    Google Scholar 

  • Stahle T, Ahmed SA, Claiborne A & Schulz GE (1991) The structure of NADH peroxidase from Streptococcus faecalis 10C1 refined at 2.16 A resolution. J. Mol. Biol. 221: 1325–1344

    Google Scholar 

  • Stucky K, Schich J, Klein JR, Heinrich B & Plapp R (1996) Characterization of pepRI, a gene coding for a potential transcriptional regulator of Lactobacillus delbrueckii subsp. lactis DSM729. FEMS Microbiol. Lett. 136: 63–69

    Google Scholar 

  • Stingele F, Neeser J-R & Mollet B (1996) Identification and characterization of the eps (exopolysaccharide) gene cluster from Streptococcus thermophilus Sfi6. J. Bacteriol. 178: 1680–1690

    Google Scholar 

  • Stingele F & Mollet B (1995) Homologous integration and transposition to identify genes involved in the production of exopolysacharides in Streptococcus thermophilus. Dev. Biol. Stand. 85: 487–493

    Google Scholar 

  • Sutherland IW (1972) Bacterial exopolysaccharides. Adv. Microbiol. Physiol. 8: 143–212

    Google Scholar 

  • Taguchi H & Ohta T (1991) D-lactate dehydrogenase is a member of the D-isomer-specific 2-hydroxyacid dehydrogenase family. J. Biol. Chem. 266: 12588–12594

    Google Scholar 

  • Tao L, Sutcliffe IC, Russell RRB & Ferretti JJ (1995) Regulation of the multiple sugar metabolism operon in Streptococcus mutans. Dev. Biol. Stand. 85: 434–350

    Google Scholar 

  • Thomas TD & Crow VF (1984) Selection of galactose-fermenting Streptococcus thermophilus in lactose-limited chemostat cultures. Appl. Environ. Microbiol. 48: 186–191

    Google Scholar 

  • Thompson J (1987) Regulation of sugar uptake and metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 46: 221–231

    Google Scholar 

  • Thompson J, Chassy BM & Egan W (1985) Lactose metabolism in Streptococcus lactis: studies with a mutant lacking glucokinase and mannose-phosphotransferase activities. J. Bacteriol. 162: 217–223

    Google Scholar 

  • Thompson J & Gentry-Weeks CR (1994) Metabolism des sucres par les bacteries lactiques. In: Bacteries Lactiques (de Roissart H & Luquest FM Eds) pp. 239–290. Lorica, Uriage, France

    Google Scholar 

  • Van Dam K, van der Vlag J, Kholodenko BN & Westerhof HV (1993) The sum of the control coefficients of all enzymes on the flux control through a group-tranfer pathway can be as high as two. Eur. J. Biochem. 212: 791–799

    Google Scholar 

  • Van Kranenburg R, Marugg JD, van Swam II, Willem NJ & de Vos WM (1996) Molecular characterization of the plasmid-located eps gene cluster coding for exopolysaccharide biosynthesis in Lactococcus lactis. (Submitted)

  • van Rooijen RJ, van Schalkwijk S & de Vos WM (1991) Molecular cloning, characterization, and nucleotide sequence of the tagatose 6-phosphate pathway gene cluster of the lactose operon of Lactococcus lactis. J. Biol. Chem. 266: 7176–7181

    Google Scholar 

  • Van Rooijen RJ, Gasson MJ & de Vos WM (1992) Characterization of the promoter of the Lactococcus lactis lactose operon: Contribution of flanking sequences and LacR repressor to its activity. J. Bacteriol. 174: 2273–2280

    Google Scholar 

  • Van Rooijen RJ & de Vos WM (1990) Molecular cloning, transcriptional analysis and nucleotide sequence of lacR, a gene encoding the repressor of the lactose phosphotransferase system of Lactococcus lactis. J. Biol. Chem. 265: 18499–18503

    Google Scholar 

  • Van Rooijen RJ, Dechering KJ, Wilmink CNJ & de Vos WM (1993) Lysines 72, 80, 213, and aspartic acid 210 of the Lactococcus lactis LacR repressor are involved in the response to the inducer tagatose-6-phosphate leading to induction of lac operon expression. Protein Eng. 6: 208–215

    Google Scholar 

  • Vaughan EE, David S & de Vos WM (1996) The lactose transporter in Leuconostoc lactis is a new member of the LacS subfamily of galactoside-pentose-hexuronide translocators. Appl. Environ. Microbiol. 62: 1547–1582

    Google Scholar 

  • Wagner E, Gotz F & Bruckner R (1993) Cloning and characterization of the scrA gene encoding the sucrose-specific enzyme II of the phosphotransferase systen of Staphylococcus carnosus

  • Ye JJ, Reizer J, Cui X & SaierJr. MJ (1994) Inhibition of the phosphoeneolpyruvate: lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr. J. Biol. Chem. 269: 11837–11844

    Google Scholar 

  • Ye JJ & SaierJr. MJ (1995) Cooperative binding of lactose and the phosphorylated phosphocarrier protein HPr(Ser-P) to the lactose/H+ symport permease of Lactobacillus brevis Proc. Natl. Acad. Sci. USA 92: 417–421

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Vos, W.M. Metabolic engineering of sugar catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 70, 223–242 (1996). https://doi.org/10.1007/BF00395934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00395934

Key words

Navigation