Skip to main content
Log in

Pathway of propionate formation from ethanol in Pelobacter propionicus

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Whole cells of Pelobacter propionicus fermented (1-13C) ethanol and CO2 to nearly equal amounts of (2-13C) and (3-13C) propionate and to (1-13C) acetate indicating a randomizing pathway of propionate formation. Enzymes involved in the fermentation were assayed in cell-free extracts and cetyltrimethylammonium bromide-permeabilized cells grown with ethanol as sole substrate. Alcohol dehydrogenase, aldehyde dehydrogenase (benzylviologen-reducing), phosphate acetyl transferase, acetate kinase, pyruvate synthase, methylmalonyl CoA: pyruvate transcarboxylase, propionyl CoA: succinate CoA transferase, and the enzymes of the succinate-methylmalonyl CoA pathway all were detected at activities sufficient to be involved in ethanol fermentation. Very low amounts of a b-type cytochrome were detected in ethanol-grown cells (46 nmol δ g protein−1). Low cell yields obtained with ethanol as substrate indicate that P. propionicus does not conserve energy by electron transport-linked fumarate reduction. Despite the presence of a hydrogenase and a shift in the fermentation of lactate towards the formation of more propionate in the presence of hydrogen, P. propionicus was unable, to catalyze, the reduction of acetate and CO2 to propionate, unlike Desulfobulbus propionicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Allen SHG, Linehan BA (1977) Presence of transcarboxylase in Arachnia propionica. Int J Syst Bacteriol 27:291–292

    Google Scholar 

  • Allen SHG, Kellermeyer RW, Stjernholm RL, Wood HG (1964) Purification and properties of enzymes involved in the propionic acid fermentation. J Bacteriol 87:171–187

    PubMed  Google Scholar 

  • Bergmeyer HU (1974) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim

    Google Scholar 

  • Boonstra J, Huttunen MT, Konings WN (1975) Anaerobic transport in Escherichia coli membrane vesicles. J Biol Chem 250:6792–6798

    PubMed  Google Scholar 

  • Bridger WA, Ramaley RF, Boyer PD (1969) Succinyl, coenzyme A synthase from Escherichia coli. Meth Enzymol 13:70–75

    Google Scholar 

  • Brockmann HL, Wood WA (1975) Electron-transferring flavoprotein of Peptostreptococcus elsdenii that functions in the reduction of acrylyl-coenzyme A. J Bacteriol 124:1447–1453

    PubMed  Google Scholar 

  • Deeb SS, Hager LP (1974) Crystalline cytochrome b1 from Escherichia coli. J Biol Chem 239:1024–1031

    Google Scholar 

  • De Vries W, van Wyck-Kapteyn WMC, Stouthamer AH (1973) Generation of ATP during cytochrome-linked anaerobic electron transport in propionic acid bacteria. J Gen Microbiol 76:31–41

    PubMed  Google Scholar 

  • De Vries W, Aleem MJH, Hemrika-Wagner A, Stouthamer AH (1977a) The functioning of cytochrome b in the electron transport to fumarate in Propionibacterium freudenreichii and Propionibacterium pentosaceum. Arch Microbiol 112:271–276

    PubMed  Google Scholar 

  • De Vries W, Rietveld-Struijk TRM, Stouthamer AH (1977b) ATP formation associated with fumarate and nitrate reduction in growing cultures of Veillonella alcalescens. Antonie van Leeuwenhoek J Microbiol Serol 43:153–167

    Google Scholar 

  • Dickerson RE, Timkovich R (1975) Cytochrome c. In: Boyer PD (ed) The Enzymes, vol XI, part A,. Academic Press, New York San Francisco London, pp 397–547

    Google Scholar 

  • Dijkhuizen L, van der Werf B, Harder W (1980) Metabolic regulation in Pseudomonas oxalaticus OX1. Diauxic growth on mixtures of oxalate and formate or acetate. Arch. Microbiol 124:261–268

    Google Scholar 

  • Friedrich B, Heine E, Finck A, Friedrich CG (1981) Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus. J Bacteriol 145:1144–1149

    PubMed  Google Scholar 

  • Galivan JH, Allen SHG (1968) Methylmalonyl-coenzyme A decarboxylase. Its role in succinate decarboxylation by Micrococcus lactilyticus. J Biol Chem 243:1253–1261

    PubMed  Google Scholar 

  • Goldberg I, Cooney CL (1981) Formation of short-chain fatty acids from H2 and CO2 by a mixed culture of bacteria. Appl Environ Microbiol 41:148–154

    Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Hatchikian EC, LeGall J (1970) Etude du métabolisme des acide dicarboxyliques et du pyruvate chez les bactéries sulfato-reductrices. I. Etude de l'oxydation enzymatique du fumarate en acetate. Ann. Inst Pasteur 118:125–142

    Google Scholar 

  • Hilpert W, Dimroth P (1983) Purification and characterization of a new sodium transport decarboxylase. Methylmalonyl-CoA decarboxylase from Veillonella alcalescens. Eur J Biochem 132:579–587

    PubMed  Google Scholar 

  • Hilpert W, Schink B, Dimroth P (1984) Life by a new decarboxylation-dependent energy conservation mechanism with Na+ as coupling ion. EMBO J 3:1665–1670

    Google Scholar 

  • International Union of Biochemistry (ed) (1984) Enzyme nomenclature 1984. Academic Press, New York

    Google Scholar 

  • Koch M, Dolfing J, Wuhrmann K, Zehnder AJB (1983) Pathways of propionate degradation by enriched methanogenic cultures. Appl Environ Microbiol 45:1411–1414

    Google Scholar 

  • Kuenen JG, Veldkamp H (1972) Thiomicrospira pelophila nov. gen., nov. sp. a new obligately chemolithotrophic colourless sulfur bacterium. Antonie van Leeuwenhoek J Microbiol Serol 38:241–256

    Google Scholar 

  • Laanbroek HJ, Abee T, Voogd JL (1982) Alcohol conversions by Desulfobulbus propionicus Lindhorst in the presence and absence of sulfate and hydrogen. Arch. Microbiol 133:178–184

    Google Scholar 

  • Lane MD, Chang HC, Miller RS (1969) Phosphoenolpyruvate carboxykinase from pig liver mitochondria. Methods Enzymol 13:270–277

    Google Scholar 

  • Leaver FW, Wood HG, Stjernholm R (1955) The fermentation of three carbon substrates by Clostridium propionicum and Propionibacterium. J Bacteriol 70:521–530

    PubMed  Google Scholar 

  • Maeba P, Sanwal BD (1969) Phosphoenolpyruvate carboxylase from Salmonella typhimurium, strain LT 2. Methods Enzymol 13:283–288

    Google Scholar 

  • Odom JM, Peck HD (1981) Localization of dehydrogenases, reductases and electron transfer components in the sulfate-reducing bacterium Desulfovibrio gigas. J Bacteriol 147:161–169

    PubMed  Google Scholar 

  • Rogosa M (1974) Gram-negative anaerobic cocci. In:. Buchanan RE, Gibbons NE (eds) Bergey's manual of determinative bacteriology, 8th edn. Williams and Wilkins, Baltimore, pp 445–449

    Google Scholar 

  • Samain E, Albagnac G, Dubourgier HC, Touzel JP (1982) Characterization of a new propionic acid bacterium that ferments ethanol and displays a growth factor dependent association with a gram negative homoacetogen. FEMS Microbiol Lett 15:69–74

    Google Scholar 

  • Schink B (1984) Fermentation of 2,3-butanediol by Pelobacter carbinolicus sp. nov. and Pelobacter propionicus, sp. nov. and evidence for propionate formation from C2 compounds. Arch Microbiol 137:33–41

    Google Scholar 

  • Schink B (1985a) Fermentation of acetylene by an obligate anaerobe, Pelobacter acetylenicus sp. nov. Arch Microbiol 142:295–301

    Google Scholar 

  • schink B (1985b) Mechanism and kinetics of succinate and propionate degradation in anoxic freshwater sediments and sewage sludge. J Gen Microbiol 131:643–650

    Google Scholar 

  • Schink B, Pfennig N (1982) Fermentation of trihydroxybenzenes by Pelobacter acidigallici gen. nov. sp. nov., a new strictly anaerobic, non-sporeforming bacterium. Arch Microbiol 133:195–201

    Google Scholar 

  • Schink B, Thompson TE, Zeikus JG (1982) Characterization of Propionispira arboris gen. nov. sp. nov., a nitrogen-fixing anaerobe common to wetwoods of living trees. J Gen Microbiol 128:2771–2779

    Google Scholar 

  • Schink B, Phelps TJ, Eichler B, Zeikus JG (1985) Comparison of ethanol degradation pathways in anoxic freshwater environments. J Gen Microbiol 131:65–660

    Google Scholar 

  • Scrutton MC, Olmsted MR, Utter MF (1969) Pyruvate carboxylase from chicken liver. Methods Enzymol 13:235–249

    Google Scholar 

  • Stams AJM, Hansen TA (1982) Oxygen labile l(+) lactate dehydrogenase activity in Desulfovibrio desulfuricans. FEMS Microbiol Lett 13:389–394

    Google Scholar 

  • Stams AJM, Kremer DR, Nicolay K, Wenk GH, Hansen TA (1984) Pathway of propionate formation in Desulfobulbus propionicus. Arch Microbiol 139:167–173

    Google Scholar 

  • Stouthamer AH (1979) The search for correlation between theoretical and experimental growth yields. In: Quayle JR (ed) International review of biochemistry., microbial biochemistry, vol 21. University Park Press, Baltimore, pp 1–47

    Google Scholar 

  • Stouthamer AH (1980) Electron transport linked phosphorylation in anaerobes. In: Gottschalk G, Pfennig N Werner H (eds) Anaerobes and anaerobic infections. Fischer, Stuttgart New York, pp 17–29

    Google Scholar 

  • Swick RW, Wood HG (1960) The role of transcarboxylation in propionic acid fermentation. Proc Natl Acad Sci USA 46:28–41

    Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  Google Scholar 

  • Thompson TE, Conrad R, Zeikus JG (1984) Regulation of carbon and electron flow in Propionispira arboris: physiological function of hydrogenase and its role in homopropionate formation. FEMS Microbiol Lett 22:265–271

    Google Scholar 

  • Wallnöfer P, Baldwin RL (1967) Pathway of propionate formation in Bacteroides ruminicola. J Bacteriol 93:504–505

    PubMed  Google Scholar 

  • Wood HG (1972) Transcarboxylase. In: Boyer PD (ed) The enzymes, vol 6. Academic Press, New York, pp 83–115

    Google Scholar 

  • Wood HG, Davis JJ, Willard JM (1969) Phosphoenolpyruvate carboxytransphosphorylase from Propionibacterium shermanii. Methods Enzymol 13:297–309

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schink, B., Kremer, D.R. & Hansen, T.A. Pathway of propionate formation from ethanol in Pelobacter propionicus . Arch. Microbiol. 147, 321–327 (1987). https://doi.org/10.1007/BF00406127

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00406127

Key words

Navigation