Skip to main content
Log in

Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans

Demonstration of enzymes required for the operation of an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Desulfotomaculum acetoxidans has been proposed to oxidize acetate to CO2 via an oxidative acetyl-CoA/carbon monoxide dehydrogenase pathway rather than via the citric acid cycle. We report here the presence of the enzyme activities required for the operation of the novel pathway. In cell extracts the following activities were found (values in brackets=specific activities and apparent K m; 1 U·mg-1=1 μmol·min-1·mg protein-1 at 37°C): Acetate kinase (6.3 U·mg-1; 2 mM acetate; 2.4 mM ATP); phosphate acetyltransferase (60 U·mg-1, 0.4 mM acetylphosphate; 0.1 mM CoA); carbon monoxide dehydrogenase (29 U·mg-1; 13% carbon monoxide; 1.3 mM methyl viologen); 5,10-methylenetetrahydrofolate reductase (3 U·mg-1, 0.06 mM CH3−FH4); methylenetetrahydrofolate dehydrogenase (3.6 U·mg-1, 0.9 mM NAD, 0.1 mM CH2=FH4); methenyltetrahydrofolate cyclohydrolase (0.3 U·mg-1); formyltetrahydrofolate synthetase (3 U·mg-1, 1.4 mM FH4, 0.4 mM ATP, 13 mM formate); and formate dehydrogenase (10 U·mg-1, 0.4 mM formate, 0.5 mM NAD). The specific activities are sufficient to account for the in vivo acetate oxidation rate of 0.26 U·mg-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

FH4 :

Tetrahydrofolate

CHO-FH4 :

N10-formyltetrahydrofolate

CH≡FH4 :

N5,N10-methenyltetrahydrofolate

CH2=FH4 :

N5,N10-methylenetetrahydrofolate

CH3−FH4 :

N5-methyltetrahydrofolate

MOPS:

morpholinopropane sulfonic acid

DTT:

d,l-1,4-dithiothreitol

TRIS:

tris-(hydroxymethyl)-aminomethane

Ap5A:

p1,P5-di(adenosine-5′)pentaphosphate

MV:

methyl viologen

References

  • Andreesen JR, Ljungdahl LG (1974) Nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum: purification and properties. J Bacteriol 120:6–14

    PubMed  Google Scholar 

  • Andreesen JR, Schaupp A, Neurauter C, Brown A, Ljungdahl LG (1973) Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO2. J Bacteriol 114:743–751

    PubMed  Google Scholar 

  • Andreesen JR, Ghazzawi EE, Gottschalk G (1974) The effect of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation. Arch Microbiol 96:103–118

    Google Scholar 

  • Blaut M, Gottschalk G (1982) Effect of trimethylamine on acetate utilization by Methanosarcina barkeri. Arch Microbiol 133:230–235

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brandis-Heep A, Gebhardt NA, Thauer RK, Widdel F, Pfennig N (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 1. Demonstration of all enzymes required for the operation of the citric acid cycle. Arch Microbiol 136:222–229

    Google Scholar 

  • Clark JE, Ljungdahl LG (1984) Purification and properties of 5,10-methylenetetrahydrofolate reductase, an iron-sulfur flavoprotein from Clostridium formicoaceticum. J Biol Chem 259:10845–10849

    PubMed  Google Scholar 

  • Clark JE, Ragsdale SW, Ljungdahl LG, Wiegel J (1982) Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum. J. Bacteriol 151:507–509

    PubMed  Google Scholar 

  • Diekert G (1980) Kohlenmonoxid-Oxidation und die Reduktion von CO2 zu Acetat in Clostridien. Doctoral thesis, University of Marburg

  • Diekert GB, Thauer RK (1978) Carbon monoxide oxidation by Clostridium thermoaceticum and Clostridium formicoaceticum. J Bacteriol 136:597–606

    PubMed  Google Scholar 

  • Diekert G, Fuchs G, Thauer RK (1985) Properties and function of carbon monoxide dehydrogenase from anaerobic bacteria. In: Poole RK, Dow CS (eds) Microbial gas metabolism: mechanistic, metabolic and biotechnological aspects. Academic Press, London, pp 115–130

    Google Scholar 

  • Eden G, Fuchs G (1983) Autotrophic CO2 fixation in Acetobacterium woodii. II. Demonstration of enzymes involved. Arch Microbiol 135:68–73

    Google Scholar 

  • Eikmanns B, Thauer RK (1984) Catalysis of an isotopic exchange between CO2 and the carboxyl group of acetate by Methanosarcina barkeri grown on acetate. Arch Microbiol 138:365–370

    Google Scholar 

  • Fischer R, Thauer RK (1988) Methane formation from acetyl phosphate in cell extracts of Methanosarcina barkeri: dependence of the reaction on coenzyme A. FEBS Lett 228:249–253

    Article  Google Scholar 

  • Fuchs G (1986) CO2 fixation in acetogenic bacteria: variations on a theme. FEMS Microbiol Rev 39:181–213

    Article  Google Scholar 

  • Gebhardt NA, Linder D, Thauer RK (1983) Anaerobic acetate oxidation to CO2 by Desulfobacter postgatei. 2. Evidence from 14C-labelling studies for the operation of the citric acid cycle. Arch Microbiol 136:230–233

    Google Scholar 

  • Gebhardt NA, Thauer RK, Linder D, Kaulfers PM, Pfennig N (1985) Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acetoxidans. Arch Microbiol 141:392–398

    Google Scholar 

  • Jansen K, Thauer RK, Widdel F, Fuchs G (1984) Carbon assimilation pathways in sulfate reducing bacteria. Formate, carbon dioxide, carbon monoxide, and acetate assimilation by Desulfovibrio baarsii. Arch Microbiol 138:257–262

    Google Scholar 

  • Kenealy WR, Zeikus JG (1982) One-carbon metabolism in methanogens: evidence for synthesis of a two-carbon cellular intermediate and unification of catabolism and anabolism in Methanosarcina barkeri. J Bacteriol 151:932–941

    PubMed  Google Scholar 

  • Kohler HPE, Zehnder AJB (1984) Carbon monoxide dehydrogenase and acetate thiokinase in Methanothrix soelngenii. FEMS Microbiol Lett 21:287–292

    Article  Google Scholar 

  • Laufer K, Eikmanns B, Frimmer U, Thauer RK (1987) Methanogenesis from acetate by Methanosarcina barkeri: catalysis of acetate formation from methyl iodide, CO2, and H2 by the enzyme system involved. Z Naturforsch 42c:360–372

    Google Scholar 

  • Lee MJ, Zinder SH (1988) Isolation and characterization of a thermophilic bacterium with oxidizes acetate in syntrophic association with a methanogen and which grows acetogenically on H2-CO2. Appl Environ Microbiol 54:124–129

    Google Scholar 

  • Leonhardt U, Andreesen JR (1977) Some properties of formate dehydrogenase, accumulation and incorporation of 185W-tungsten into proteins of Clostridium formicoaceticum. Arch Microbiol 115:277–284

    PubMed  Google Scholar 

  • Ljungdahl LG (1986) The autotrophic pathway of acetate synthesis in acetogenic bacteria. Annu Rev Microbiol 40:415–450

    Article  CAS  PubMed  Google Scholar 

  • Ljungdahl LG, O'Brien WE, Moore MR, Liu MT (1980) Methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum and methylentetrahydrofolate dehydrogenase, methenyltetrahydrofolate cyclohydrolase (combined) from Clostridium thermoaceticum. In: McCormick DB, Wright LD (eds) Methods in enzymology, vol 66. Academic Press, New York London, pp 599–609

    Google Scholar 

  • Möller-Zinkhan D, Thauer RK (1988) Membrane-bound NADPH dehydrogenase-and ferredoxin: NADP oxidoreductase activity involved in electron transport during acetate oxidation to CO2 in Desulfobacter postgatei. Arch Microbiol (in press)

  • Möller D, Schauder R, Fuchs G, Thauer RK (1987) Acetate oxidation to CO2 via a citric acid cycle involving an ATP-citrate lyase: a mechanism for the synthesis of ATP via substrate level phosphorylation in Desulfobacter postgatei growing on acetate and sulfate. Arch Microbiol 148:202–207

    Google Scholar 

  • Moore MR, O'Brien WE, Ljungdahl LG (1974) Purification and characterization of nicotinamide adenine dinucleotide-dependent methylenetetrahydrofolate dehydrogenase from Clostridium formicoaceticum. J Biol Chem 249:5250–5253

    PubMed  Google Scholar 

  • O'Brien WE, Ljungdahl LG (1972) Fermentation of fructose and synthesis of acetate from carbon dioxide by Clostridium formicoaceticum. J Bacteriol 109:626–632

    PubMed  Google Scholar 

  • O'Brien WE, Brewer JM, Lijungdahl LG (1973) Purification and characterization of thermostable 5,10-methylenetetrahydrofolate dehydrogenase from Clostridium thermoaceticum. J Biol Chem 248:403–408

    PubMed  Google Scholar 

  • Pfennig N, Widdel F, Trüper HG (1981) The dissimilatory sulfatereducing bacteria. In: Starr MP, Stolp, H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes, vol I. Springer, Berlin Heidelberg New York, pp 926–940

    Google Scholar 

  • Postgate JR (1984) The sulphate-reducing bacteria, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Rabinowitz JC (1963) Preparation and properties of 5,10-methenyltetrahydrofolic acid and 10-formyltetrahydrofolic acid. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol VI. Academic Press, New York London, pp 814–815

    Google Scholar 

  • Rabinowitz JC, Pricer Jr WE (1962) Formyltetrahydrofolate synthetase. I. Isolation and crystallization of the enzyme. J Biol Chem 237:2898–2902

    PubMed  Google Scholar 

  • Ragsdale SW, Ljungdahl LG (1984) Purification and properties of NAD-dependent 5,10-methylenetetrahydrofolate dehydrogenase from Acetobacterium woodii. J Biol Chem 259:3499–3503

    PubMed  Google Scholar 

  • Savage MD, Wu Z, Daniel SL, Lundie Jr LL, Drake HL (1987) Carbon monoxide-dependent chemolitothrophic growth of Clostridium thermoautotrophicum. Appl Environ Microbiol 53:1902–1906

    PubMed  Google Scholar 

  • Schauder R, Eikmanns B, Thauer RK, Widdel F, Fuchs G (1986) Acetate oxidation to CO2 in anaerobic bacteria via a novel pathway not involving reactions of the citric acid cycle. Arch Microbiol 145:162–172

    Google Scholar 

  • Schauder R, Widdel F, Fuchs G (1987) Carbon assimilation pathways in sulfate-reducing bacteria. II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus. Arch Microbiol 148:218–225

    Google Scholar 

  • Schaupp A, Ljungdahl LG (1974) Purification and properties of acetate kinase from Clostridium thermoaceticum. Arch Microbiol 100:121–129

    PubMed  Google Scholar 

  • Sun AY, Ljungdahl L, Wood HG (1969) Total synthesis of acetate from CO2. II. Purification and properties of formyltetrahydrofolate synthetase from Clostridium thermoaceticum. J Bacteriol 98:842–844

    PubMed  Google Scholar 

  • Tanner RS, Wolfe RS, Ljungdahl LG (1978) Tetrahydrofolate enzyme levels in Acetobacterium woodii and their implication in the synthesis of acetate from CO2. J Bacteriol 134:668–670

    PubMed  Google Scholar 

  • Thauer RK (1982) Dissimilatory sulphate reduction with acetate as electron donor. Phil Trans R Soc Lond B 298:467–471

    Google Scholar 

  • Thebrath B (1986) Biochemie der Sulfat-Aktivierung bei der Gattung Desulfotomaculum. Diploma thesis, University of Konstanz

  • Widdel F (1980) Anaerober Abbau von Fettsäuren und Benzoesäure durch neu isolierte Arten Sulfat-reduzierender Bakterien. Doctoral thesis, University of Göttingen

  • Widdel F (1988) Microbiology and ecology of sulfate-and sulfur-reducing bacteria. In: Zehnder AJB (ed) Environmental microbiology of anaerobes, chapt 10. John Wiley & Sons, New York London) (in press)

    Google Scholar 

  • Widdel F, Pfennig N (1977) A new anaerobic, sporing, acetateoxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112:119–122

    PubMed  Google Scholar 

  • Widdel F, Pfennig N (1981a) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129:395–400

    Google Scholar 

  • Widdel F, Pfennig N (1981b) Sporulation and further nutritional characteristics of Desulfotomaculum acetoxidans. Arch Microbiol 129:401–402

    PubMed  Google Scholar 

  • Widdel F, Pfennig N (1984) Dissimilatory sulfate-or sulfur-reducing bacteria. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 1. Williams & Wilkins, Baltimore London, pp 663–679

    Google Scholar 

  • Wood HG, Ragsdale SW, Pezacka E (1986) The acetyl-CoA pathway of autotrophic growth. FEMS Microbiol Rev 39:345–362

    Article  Google Scholar 

  • Zinder SH, Koch M (1984) Non-aceticlastic methanogenesis from acetate: acetate oxidation by a thermophilic syntrophic coculture. Arch Microbiol 138:263–272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spormann, A.M., Thauer, R.K. Anaerobic acetate oxidation to CO2 by Desulfotomaculum acetoxidans . Arch. Microbiol. 150, 374–380 (1988). https://doi.org/10.1007/BF00408310

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00408310

Key words

Navigation