Skip to main content
Log in

Siroheme sulfite reductase isolated from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cells of the phototrophic bacterium Chromatium vinosum strain D were shown to contain a siroheme sulfite reductase after autotrophic growth in a sulfide/bicarbonate medium. The enzyme could not be detected in cells grown heterotrophically in a malate/sulfate medium. Siroheme sulfite reductase was isolated from autotrophic cells and obtained in an about 80% pure preparation which was used to investigate some molecular and catalytic properties of the enzyme. It was shown to consist of two different types of subunits with molecular weights of 37,000 and 42,000, most probably arranged in an α4β4-structure. The molecular weight of the native enzyme was determined to 280,000, 51 atoms of iron and 47 atoms of acid-labile sulfur were found per enzyme molecule. The absorption spectrum indicated siroheme as prosthetic group; it had maxima at 280 nm, 392 nm, 595 nm, and 724 nm. The molar extinction coefficients were determined as 302×103 cm2xmmol-1 at 392 nm, 98×103 cm2 xmmol-1 at 595 nm and 22×103 cm2x-mmol-1 at 724 nm. With reduced viologen dyes as electron donor the enzyme reduced sulfite to sulfide, thiosulfate, and trithionate. The turnover number with 59 (2 e-/enzyme moleculexmin) was low. The pH-optimum was at 6.0. C. vinosum sulfite reductase closely resembled the corresponding enzyme from Thiobacillus denitrificans and also desulfoviridin, the dismilatory sulfite reductase from Desulfovibrio species. It is proposed that C. vinosum catalyses anaerobic oxidation of sulfide and/or elemental sulfur to sulfite in the course of dissimilatory oxidation of reduced sulfur compounds to sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

APS:

adenylyl sulfate

SDS:

sodium dodecyl sulfate

References

  • Fischer, U., Trüper, H. G.: Cytochrome c 550 of Thiocapsa roseopersicina: Properties and reduction by sulfide. FEMS Lett. 1, 87–90 (1977)

    Google Scholar 

  • Grant, W. M.: Colorimetric determination of sulfur dioxide. Ind. Eng. Chem. Anal. Ed. 19, 345–346 (1947)

    Google Scholar 

  • Hashwa, F.: Die enzymatische Thiosulfatspaltung bei phototrophen Bakterien. Diss. Univ. Göttingen (1972)

  • Hashwa, F.: Thiosulfate metabolism in some red phototrophic bacteria. Plant Soil 43, 41–47 (1975)

    Google Scholar 

  • Kelly, D. P., Chambers, L. A., Trudinger, P. A.: Cyanolysis and spectrophotometric estimation of trithionate in a mixture with thiosulfate and tetrathionate. Anal. Chem. 41, 898–901 (1969)

    Google Scholar 

  • King, T. E., Morris, R. O.: Determination of acid-labile sulfide and sulfhydryl groups. In: Methods in enzymology. S.P. Colowick, N. O. Kaplan, (eds.), Vol. 10, pp. 635–641. New York: Academic Press 1966

    Google Scholar 

  • Kobayashi, K., Seki, Y., Ishimoto, M.: Biochemical studies on sulfate-reducing bacteria. XIII. Sulfite reductase from Desulfovibrio vulgaris-mechanism of trithionate, thiosulfate, and sulfide formation and enzymatic properties. J. Biochem. 75, 519–529 (1974)

    Google Scholar 

  • Kobayashi, K., Takahashi, E., Ishimoto, M.: Biochemical studies on sulfate-reducing bacteria. XI. Purification and properties of sulfite reductase, desulfoviridin. J. Biochem. 72, 879–887 (1972)

    Google Scholar 

  • Lee, J. P., Le Gall, J., Peck, H. D., Jr.: Isolation of assimilatory and dissimilatory-type sulfite reductases from Desulfovibrio vulgaris. J. Bacteriol. 115, 529–542 (1973)

    Google Scholar 

  • Lowry, O. H., Rosebrough, H. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Murphy, M. J., Siegel, L. M.: Siroheme and sirohydrochlorin. The basis for a new type of porphyrin-related prosthetic group common to both assimilatory and dissimilatory sulfite reductases. J. Biol. Chem. 248, 6911–6919 (1973)

    Google Scholar 

  • Peck, H. D., Jr., Tedro, S., Kamen, M. D.: Sulfite reductase activity in extracts of various photosynthetic bacteria. Proc. Nat. Acad. Sci. (U.S.A.) 71, 2404–2406 (1974)

    Google Scholar 

  • Pfanstiel, R.: Salts of dithionic acid. In: Inorganic synthesis. W. C. Fernelius, ed. N. Y. 2, 167–172 (1946)

  • Pfennig, N., Lippert, K. D.: Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55, 245–256 (1966)

    Google Scholar 

  • Sandell, E. B.: Colorimetric determination of traces of metals. Interscience Publishers, New York (1944)

    Google Scholar 

  • Schedel, M., Trüper, H. G.: Purification of Thiobacillus denitrificans siroheme sulfite reductase and investigation of some molecular and catalytic properties. Biochim. Biophys. Acta (in press, 1979)

  • Siegel, L. M.: Biochemistry of the sulfur cycle. In: Metabolic pathways. 3rd edition. Metabolism of sulfur compounds. D. N. Greenberg (ed.), Vol. 7, pp. 217–286. New York: Academic Press 1975

    Google Scholar 

  • Stamm, H., Goehring, M.: Zur Kenntnis der Polythionsäuren und ihrer Bildung. VI. Neue Verfahren zur Darstellung von Kaliumtrithionat und von Kaliumtetrathionat. Z. Anorg. Allg. Chem. 250, 226–228 (1942)

    Google Scholar 

  • Thiele, H. H.: Sulfur metabolism in Thiorhodaceae. V. Enzymes of sulfur metabolism in Thiocapsa floridana and Chromatium species. Antonie van Leeuwenhoek. J. Microbiol. Serol. 34, 350–356 (1968)

    Google Scholar 

  • Tiselius, A., Hjerten, S., Levin, Ö.: Protein chromatography on calcium phosphate columns. Arch. Biochem. Biophys. 65, 132–155 (1956)

    Google Scholar 

  • Trüper, H. G.: The enzymology of sulfur metabolism in phototrophic bacteria — a review. Plant Soil 43, 29–39 (1975)

    Google Scholar 

  • Trüper, H. G., Peck, H. D. Jr.: Formation of adenylyl sulfate in phototrophic bacteria. Arch. Mikrobiol. 73, 125–142 (1970)

    Google Scholar 

  • Trüper, H. G., Schlegel, H. G.: Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii. Antonie van Leeuwenhoek, J. Microbiol. Serol. 30, 225–238 (1964)

    Google Scholar 

  • Wagner, G. C., Kassner, R. J., Kamen, M. D.: Redox potentials of certain vitamins K: Implications for a role in sulfite reduction by obligately anaerobic bacteria. Proc. Nat. Acad. Sci. (U.S.A.) 71, 253–256 (1974)

    Google Scholar 

  • Weber, K., Pringle, J. R., Osborn, M.: Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. In: Methods in enzymology. S. P. Colowick, N. O. Kaplan (eds.), Vol. 26, pp. 3–27. New York: Academic Press, 1972

    Google Scholar 

  • Willstätter, R., Kraut, H.: Über ein Tonerde-Gel von der Formel Al(OH)3. II. Mitteilung über Hydrate und Hydrogele. Chem. Ber. 56, 1117–1121 (1923)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schedel, M., Vanselow, M. & Trüper, H.G. Siroheme sulfite reductase isolated from Chromatium vinosum. Purification and investigation of some of its molecular and catalytic properties. Arch. Microbiol. 121, 29–36 (1979). https://doi.org/10.1007/BF00409202

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00409202

Key words

Navigation