Skip to main content
Log in

skippy, a retrotransposon from the fungal plant pathogen Fusarium oxysporum

  • Original Paper
  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Abstract

A retrotransposon from the fungal plant pathogen Fusarium oxysporum f. sp. lycopersici has been isolated and characterized. The element, designated skippy (skp) is 7846 by in length, flanked by identical long terminal repeats (LTR) of 429 by showing structural features characteristic of retroviral and retrotransposon LTRs. Target-site duplications of 5 bp were found. Two long overlapping open reading frames (ORF) were identified. The first ORF, 2562 by in length, shows homology to retroviral gag genes. The second ORF, 3888 bp in length, has homology to the protease, reverse transciptase. RNase H and integrase domains of retroelement pol genes in that order. Sequence comparisons and the order of the predicted proteins from skippy indicate that the element is closely related to the gypsy family of LTR-retrotransposons. The element is present in similar copy numbers in the two races investigated, although RFLP analysis showed differences in banding patterns. The number of LTR sequences present in the genome is higher than the number of copies of complete elements, indicating excision by homologous recombination between LTR sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amstrong GM, Amstrong JK (1990) In: Nelson PE, Toussoun TA, Cook RJ (eds) Fusarium: diseases, biology and taxonomy. Pennsylvania State University Press, University Park, Pa., pp 391–399

    Google Scholar 

  • Bingham PM, Zachar Z (1989) Retrotransposons and the FB transposons from Drosophila melanogaster. In: Berg DE. Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 485–502

    Google Scholar 

  • Bradshaw VA, McEntee K (1989) DNA damages activate transcription and transposition of yeast Ty retrotransposons. Mol Gen Genet 218:465–474

    Google Scholar 

  • Callow JA (1987) Models for host-pathogen interaction. In: Day PR, Jellis GJ (eds) Genetics and plant pathogenesis. Blackwell, Oxford, pp 283–295

    Google Scholar 

  • Cambareri EB, Helfer J, Kinsey JA (1994) Tadl-l,. an active LINE-like element of Neurospora crassa. Mol Gen Genet 242:658–665

    Google Scholar 

  • Covey SN (1986) Amino acid sequence homology in the gag region of reverse transcribing elements and the coat protein of cauliflower mosaic virus. Nucleic Acids Res 14:623–633

    Google Scholar 

  • Daboussi MJ, Langin T (1994) Transposable elements in the fungal plant pathogen Fusarium oxysporum. Genetica 93:49–59

    Google Scholar 

  • Daboussi M-J, Langin T, Brygoo Y (1992) Fot 1, a new family of fungal transposable elements. Mol Gen Genet 232:12–16

    Google Scholar 

  • Di Pietro A, Anaya N, Roncero MIG (1994) Occurrence of a retrotransposon-like sequence among different formae speciales and races of Fusarium oxysporum Mycol Res 98:993–996

    Google Scholar 

  • Dobinson KF, Harris RE, Hamer JE (1993) Grasshopper, a long terminal repeat (LTR) retroelement in the phytopathogenic fungus Magnaporthe grisea. Mol Plant-Microbe Interact 6:114–126

    Google Scholar 

  • Doolittle RE, Feng DF, Johnson MS, McClure MA (1989) Origins and evolutionary relationships of retroviruses. Quart Rev Biol 64:1–30

    Google Scholar 

  • Errede B, Company M, Fercha KJD, Hutchinson CA III (1985) Activation regions in a yeast transposon have homology to mating type control sequences and to mammalian enhancers. Proc Natl Acad Sci USA 82:5423–5427

    Google Scholar 

  • Flavell AJ, Smith DB, Kumar A (1992) Extreme heterogeneity of Tyl-copia group retrotransposons in plants. Mol Gen Genet 231:233–242

    Google Scholar 

  • Friesen PD, Nissen MS (1990) Gene organization and transcription of TED, a lepidopteran retrotransposon integrated in the baculovirus genome. Mol Cell Biol 10:3067–3077

    Google Scholar 

  • Hamer JE, Farrall L, Orbach MJ, Valent B, Chumley FG (1989) Host species-specific conservation of a family of repeated DNA sequences in the genome of a fungal plant pathogen. Proc Natl Acad Sci USA 86:9981–9985

    Google Scholar 

  • Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359

    Google Scholar 

  • Higgins DH, Sharp PM (1988) CLUSTAL a package for performing multiple sequence alignment on a microcomputer Gene 73:237–244

    Google Scholar 

  • Johnson MS, McClure MA, Feng DF, Gray J, Dolittle RF (1986) Computer analysis of retroviral pol genes: assignment of enzymatic functions to specific sequences and homologies with non-viral enzymes. Proc Natl Acad Sci USA 83:7648–7652

    Google Scholar 

  • Julien J, Poirier-Hamon S, Brygoo Y (1992) Foret 1, a reverse transcriptase-like sequence in the filamentous fungus Fusarium oxysporum. Nucleic Acids Res 20:3933–3937

    Google Scholar 

  • Katoh IT, Yasunaga T, Ikawa Y, Yoshinaga Y (1987) Inhibition of retroviral protease activity by an aspartyl proteinase inhibitor. Nature 329:654–656

    Google Scholar 

  • Kingsman AJ, Kingsman SM (1988) Ty: a retroelement moving forward. Cell 53:333–334

    Google Scholar 

  • Kinsey JA, Helber J (1989) Isolation of a transposable element from Neurospora crassa. Proc Natl Acad Sci USA 86:1929–1933

    Google Scholar 

  • Langin T, Capy P, Daboussi M-J (1995) The transposable element impala, a fungal member of the Tcl-mariner superfamily. Mol Gen Genet 246:19–28

    Google Scholar 

  • Leong SA, Farman ML, Smith JR, Budde A Tosa Y. Nitta N (1994) Molecular genetic approach to the study of cultivr specificity in the rice blast fungus. In: Zeigler RS, Leong SA, Teng PS (eds) Rice blast disease. CAB International Press, Wallindor, UK, pp 87–110

    Google Scholar 

  • Levin HL, Weaver DC, Boeke JD (1990) Two related families of retrotransposons from Schizosaccharomyces pombe. Mol Cell Biol 10:6791–6798

    Google Scholar 

  • McDonald JF (1993) Evolution and consequences of transposable elements. Curr Biol 3:855–864

    Google Scholar 

  • McHale MT, Roberts IN, Talbot NJ, Oliver RP (1989) Expression of reverse transcriptase genes in Fulvia fulva. Mol Plant-Microbe Interact 2:165–168

    Google Scholar 

  • McHale MT, Roberts IN, Noble SM, Beaumont C, Whitehead MP, Seth Da, Oliver RP (1992) Cft-1: an LTR-retrotransposon in Cladosporium fulvum, a fungal pathogen of tomato. Mol Gen Genet 233:337–347

    Google Scholar 

  • Mount SM, Rubin GM (1985) Complete nucleotide sequence of the Drosophila transposable element copia: homology between copia and retroviral protein. Mol Cell Biol 5:1630–1638

    Google Scholar 

  • Paquin CE, Williamson VM (1988) In: Eukaryotic transposable elements as mutagenic agents, Banbury Report 30, Cold Spring Harbor Laboratory, Press, Cold Spring Harbor, New York

    Google Scholar 

  • Pouteau S, Grandbastein M-A, Boccara M (1994) Microbial elicitors of plant defense responses activate transcription of a retrotransposon. Plant J 5:535–542

    Google Scholar 

  • Raeder U, Broda P (1985) Rapid preparation of DNA from filamentous fungi. Lett Appl Microbiol 1:17–20

    Google Scholar 

  • Robert IN, Oliver RP Punt PJ, van den Hondel CAMJJ (1989) Expression of the Escherichia coli β-glucuronidase gene in industrial and phytopathogenic fungi. Curr Genet 15:177–180

    Google Scholar 

  • Romao J, Hamer JE (1992) Genetic organization of a repeated DNA sequence family in the rice blast fungus. Proc Natl Acad Sci USA 89:5316–5320

    Google Scholar 

  • Saigo K, Kugimiya W, Matsuo Y, Inouye S, Yoshioka K, Yuki S (1984) The identification of the coding sequence for a reverse transcriptase-like enzyme in a transposable genetic element in Drosophila melanogaster. Nature 312:659–661

    Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1979) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Southern EM Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517

  • Springer MS, Britten RJ (1993) Phylogenetic relationship of reverse transcriptase and RNase H sequences and aspects of genome structure in the gypsy group of retrotransposons. Mol Biol Evol 10:1370–1379

    Google Scholar 

  • Valent B, Chumley FG (1991) Molecular genetic analysis of the rice blast fungus, Magnaporthe grisea. Annu Rev Phytopathol 29:443–467

    Google Scholar 

  • Varmus H, Brown P (1989) Retroviruses. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 53–108

    Google Scholar 

  • Xiong Y, Eickbush TH (1990) Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J 9:3353–3362

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by C. A. M. J. J. van den Hondel

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anava, N., Roncero, M.I.G. skippy, a retrotransposon from the fungal plant pathogen Fusarium oxysporum . Molec. Gen. Genet. 249, 637–647 (1995). https://doi.org/10.1007/BF00418033

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418033

Key words

Navigation