Skip to main content
Log in

Homology and distribution of CO dehydrogenase structural genes in carboxydotrophic bacteria

  • Original Papers
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The 17 (S), 30 (M) and 87 kDa (L) subunits of CO dehydrogenases from the CO-oxidizing bacteria Pseudomonas carboxydoflava, Pseudomonas carboxydohydrogena and Pseudomonas carboxydovorans OM5 were isolated and purified. The N-terminal sequences of same subunits from different bacteria showed distinct homologies. Dot blot hybridization employing oligonucleotide probes derived from the sequences of the S-subunit of P. carboxydovorans OM5 and the M-subunit of P. carboxydohydrogena and DNA of the plasmid-containing CO-oxidizing bacteria Alcaligenes carboxydus, Azomonas B1, P. carboxydoflava, P. carboxydovorans OM2, OM4 and OM5 indicated that all genes encoding these subunits reside on plasmids. That in P. carboxydovorans OM5 CO dehydrogenase structural genes are located entirely on plasmid pHCG3 was evident from the absence of hybridization employing DNA from the cured mutant strain OM5-12. CO dehydrogenase structural genes could be identified on the chromosome of the plasmid-free bacteria Arthrobacter 11/x, Bacillus schlegelii, P. carboxydohydrogena and P. carboxydovorans OM3. There was no example of a plasmid-harboring carboxydotrophic bacterium that did not carry CO dehydrogenase structural genes on the plasmid. The N-terminal sequences of CO dehydrogenase structural genes were found to be conserved among carboxydotrophic bacteria of distinct taxonomic position, independent of the presence of plasmids. It is discussed whether this might be the consequence of horizontal gene transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen K, Wilke-Douglas M (1984). Construction and use of a gene bank of Alcaligenes eutrophus in the analysis of ribulose bisphosphate carboxylase genes. J Bacteriol 159:973–978

    Google Scholar 

  • Andersen K, Tait RC, King WR (1981) Plasmids required for utilization of molecular hydrogen by Alcaligenes eutrophus. Arch Microbiol 129:384–390

    Google Scholar 

  • Aragno M (1978) Enrichment, isolation and preliminary characterization of a thermophilic, endospore-forming hydrogen bacterium. FEMS Microbiol Lett 3:13–15

    Google Scholar 

  • Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) (1987) Current protocols in molecular biology. Wiley, New York, USA

    Google Scholar 

  • Banfalvi Z, Sakanyan V, Koncz C, Kiss A, Dusha I, Kondorosi A (1981) Location of nodulation and nitrogen fixation genes on a high molecular weight plasmid of Rhizobium melioti. Mol Gen Genet 184:318–325

    Google Scholar 

  • Behki RM, Selvaraj G, Iyer VN (1983) Hydrogenase and ribulose-1,5-bisphosphate carboxylase activities of Alcaligenes eutrophus ATCC 17706 associated with an indigenous plasmid. Can J Microbiol 29:767–774

    Google Scholar 

  • Bell JM, Williams E, Colby J (1985) Carbon monoxide oxidoreductase from thermophilic carboxydobacteria. In: Poole RK, Dow DS (eds) Microbial gas metabolism. Academic Press, London, pp 153–160

    Google Scholar 

  • Brewin NJ, DeJong TM, Phillips DA, Johnston AWB (1980) Cotransfer of determinants for hydrogenase activity and nodulation ability in Rhizobium leguminosarum. Nature 288:77–79

    Google Scholar 

  • Chakrabarty AM (1976) Plasmids in Pseudomonas. Ann Rev Genet 10:7–30

    Google Scholar 

  • Cypionka H, Meyer O (1982) Why carboxydobacteria are insensitive to carbon monoxide. Zbl Bkt Hyg, I. Abt C 3:534–538

    Google Scholar 

  • Cypionka H, Meyer O (1983a) The cytochrome composition of carboxydotrophic bacteria. Arch Microbiol 135:293–298

    Google Scholar 

  • Cypionka H, Meyer O (1983b) Carbon monoxide-insensitive respiratory chain of Pseudomonas carboxydovorans. J Biol Chem 156:1178–1187

    Google Scholar 

  • Cypionka H, Meyer O, Schlegel HG (1980) Physiological characteristics of various species of strains of carboxydobacteria. Arch Microbiol 127:301–307

    Google Scholar 

  • Derylo M, Glowacka M, Skorupska A, Lorkiewicz Z (1981) Nif Plasmid from Lignobacter. Arch Microbiol 130:322–324

    Google Scholar 

  • Eberhardt U (1969) On chemolithotrophy and hydrogenase of a Gram-positive Knallgas bacterium. Arch Mikrobiol 66:91–104

    Google Scholar 

  • Edman P, Begg G (1967) A protein sequenator. Eur J Biochem 1:80–91

    Google Scholar 

  • Friedrich B, Hogrefe C, Schlegel HG (1981) Naturally occurring genetic transfer of hydrogen-oxiding ability between strains of Alcaligenes eutrophus. J Bacteriol 147:198–205

    Google Scholar 

  • Friedrich B, Kortlüke C, Hogrefe C, Ebertz G, Silber B, Warrelmann J (1986) Genetics of hydrogenase from aerobic lithoautotrophic bacteria. Biochimie 68:133–145

    Google Scholar 

  • Futo S, Meyer O (1986) CO2 is the first species formed upon CO oxidation by CO dehydrogenase from Pseudomonas carboxydovorans. Arch Microbiol 145:358–360

    Google Scholar 

  • Gerstenberg C, Friedrich B, Schlegel HG (1982) Physical evidence for plasmids in autotrophic, especially hydrogen-oxidizing bacteria. Arch Microbiol 133:90–96

    Google Scholar 

  • Hegeman GD (1984) Oxidation of carbon monoxide by aerobic bacteria. In: Crawford RL, Hanson RC (eds) Microbial growth on C1-compounds. ASM, Washington DC, pp 21–25

    Google Scholar 

  • Helinski DR (1973) Plasmid determined resistance to antibiotics: molecular properties of R factors. Ann Rev Microbiol 27:437–470

    Google Scholar 

  • Hogrefe C, Römermann D, Friedrich B (1984) Alcaligenes eutrophus hydrogenase genes (hox). J Bacteriol 158:43–48

    Google Scholar 

  • Hombrecher G, Brewin NJ, Johnston AWB (1981) Linkage of genes for nitrogenase and nodulation ability on plasmids in Rhizobium leguminosarum and Rhizobium phaseoli. Mol Gen Genet 182:133–136

    Google Scholar 

  • Jacobitz S, Meyer O (1986) Reduced pyridine nucleotides in Pseudomonas carboxydovorans are formed by reverse electron transfer linked to proton motive force. Arch Microbiol 145:372–377

    Google Scholar 

  • Kado CI, Liu ST (1981) Rapid procedure for detection and isolation of large and small plasmids. J Bacteriol 145:1365–1373

    Google Scholar 

  • Kim ES, Kim YM (1984) Subunit structure of carbon monoxide oxidase from Pseudomonas carboxydovorans. Korean Biochem J 17:141–147

    Google Scholar 

  • Kim ES, Ro YT, Kim YM (1989) Purification and some properties of carbon monoxide dehydrogenase from Acinetobacter sp. strain JC1 DSM 3803. J Bacteriol 171:958–964

    Google Scholar 

  • Kim YM, Hegeman GD (1981) Purification and some properties of carbon monoxide dehydrogenase from Pseudomonas carboxydohydrogena. J Bacteriol 148:904–911

    Google Scholar 

  • Kim YM, Hegeman GD (1983) Oxidation of carbon monoxide by bacteria. Int Rev Cytol 81:1–32

    Google Scholar 

  • Kim YM, Kirkconell S, Hegeman GD (1982) Immunological relationship among CO dehydrogenases of carboxydotrophic bacteria. FEMS Microbiol Lett 13:219–223

    Google Scholar 

  • Kirkconell S, Hegeman GD (1979)_Properties of bacteria that oxidize carbon monoxide as sole source of energy. Abstr Annu Meet Am Soc Microbiol 13

  • Klintworth R, Husemann M, Salnikow J, Bowien B (1985) Chromosomal and plasmid locations for phosphoribulokinase genes in Alcaligenes eutrophus. J Bacteriol 164:954–956

    Google Scholar 

  • Kraut M, Meyer O (1988) Plasmids in carboxydotrophic bacteria: physical and restriction analysis. Arch Microbiol 149:540–546

    Google Scholar 

  • Krüger B, Meyer O (1984) Thermophilic Bacilli growing with carbon monoxide Arch Microbiol 139:402–408

    Google Scholar 

  • Krüger B, Meyer O (1986) The pterin of carbon monoxide dehydrogenase from Pseudomonas carboxydoflava. Eur J Biochem 157:121–128

    Google Scholar 

  • Kwon MO, Kim YM (1985) Relationship between carbon monoxide dehydrogenase and a small plasmid of Psedomonas carboxydovorans. FEMS Microbiol Lett 29:155–159

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Google Scholar 

  • Maniatis T, Fritsch EF, Sambrook J (eds) (1982) Molecular cloning — a laboratory manual. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218

    Google Scholar 

  • Mergeay M, Nies D, Schlegel HG, Gerits, J, Charles P, van Gijsegem F (1985) Alcaligenes eutrophus CH34, a facultative chemolithotroph displaying plasmid-bound resistance to heavy metals. J Bacteriol 162:328–334

    Google Scholar 

  • Meyer O (1982) Chemical and spectral properties of carbon monoxide: methylene blue oxidoreductase. J Biol Chem 257:1333–1341

    Google Scholar 

  • Meyer O (1985) Metabolism of aerobic carbon monoxide-utilizing bacteria. In: Poole RK, Dow CS (eds) Microbial gas metabolism. Academic Press, London, pp 131–151

    Google Scholar 

  • Meyer O (1988) Biology and biotechnology of aerobic carbon monoxide-oxidizing bacteria. In: Finn RK, Präve P, Schlingmann M, Crueger W, Esser K, Thauer R, Wagner F (eds) Biotechnology focus 1. Hauser, München Wien New York, pp 3–31

    Google Scholar 

  • Meyer O, Fiebig K (1985) Enzymes oxidizing carbon monoxide. In: Degn H, Cox RP, Toftlunf H (eds) Gas enzymology Reidel, Dordrecht, pp 147–168

    Google Scholar 

  • Meyer O, Rajagopalan KV (1984) Molybdopterin in carbon monoxide oxidase from carboxydotrophic bacteria. J Bacteriol 157:643–648

    Google Scholar 

  • Meyer O, Rohde M (1984) Enzymology and bioenergetics of carbon monoxide-oxidizing bacteria. In: Crawford RL, Hanson RS (eds) Microbial growth on C1 compounds. American Society for Microbiology, Washington DC, USA, pp 26–73

    Google Scholar 

  • Meyer O, Schlegel HG (1978) Reisolation of the carbon monoxide utilizing hydrogen bacterium Pseudomonas carboxydovorans (Kistner) comb. nov. Arch Microbiol 118:35–43

    Google Scholar 

  • Meyer O, Schlegel HG (1979) Oxidation of carbon monoxide in cell extract of Pseudomonas carboxydovorans. J. Bacteriol 137:811–817

    Google Scholar 

  • Meyer O, Schlegel HG (1980) Carbon monoxide: methylene blue oxidoreductase from Pseudomonas carboxydovorans. J Bacteriol 141:74–80

    Google Scholar 

  • Meyer O, Schlegel HG (1983) Biology of aerobic carbon monoxideoxiding bacteria. Ann Rev Microbiol 37:277–310

    Google Scholar 

  • Meyer O, Jacobitz S, Krüger B (1986) Biochemistry and physiology of aerobic carbon monoxide-utilizing bacteria. FEMS Microbiol Rev 39:161–179

    Google Scholar 

  • Nelson JD Blair W, Brickmann FE, Colwell RR, Iverson WP (1973) Biodegradation of phenylmercuric acetate by mercury-resistant bacteria. Appl Microbiol 26:321–326

    Google Scholar 

  • Nozhevnikova AN, Zavarzin GA (1974) On the taxonomy of CO-oxidizing Gram-negative bacteria. Ivz Acad Nauk SSSR Ser Biol 3:436–440

    Google Scholar 

  • Nuti MP, Lepidi AA, Prakash RK, Schilperoort RA Cannon FC (1979) Evidence for nitrogen fixation (nif) genes on indigenous Rhizobium plasmids. Nature 282:533–535

    Google Scholar 

  • Park, YI, Hegeman GD (1984) The oxidation of carbon monoxide by bacteria. In: Strohl WR, Tuovinen OH (eds) Microbial chemoautotrophy. Ohio State University Press, Columbus, USA, pp 211–218

    Google Scholar 

  • Sanjieva EU, Zavarzin GA (1971) Oxidation of carbon monoxide by Seliberia carboxydohydrogena. Dokl Akad Nauk SSSR 196:956–958

    Google Scholar 

  • Schenk A, Aragno M (1979) Bacillus schlegelii, a new species of thermophilic, facultatively chemolithoautotrophic bacterium oxidizing molecular hydrogen. J Gen Microbiol 115:333–341

    Google Scholar 

  • Singh M, Kleeberger A, Klingmüller W (1983) Location of nitrogen fixation (nif) genes on indigenous plasmids of Enterobacter agglomerans. Mol Gen Genet 190:373–378

    Google Scholar 

  • Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide-gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci (USA) 76:4350–4354

    Google Scholar 

  • Van Niel CB, Allen MB (1952) A note on Pseudomonas stutzeri. J Bacteriol 64:413–422

    Google Scholar 

  • Walker JD, Colwell RR (1974) Mercury resistant bacteria and petroleum degradation. Appl Microbiol 27:285–287

    Google Scholar 

  • Wheelis ML (1975) The genetics of dissimilarity pathways in Pseudomonas. Ann Rev Microbiol 29:505–524

    Google Scholar 

  • Zavarzin GA, Nozhevnikova AN (1977) Aerobic carboxydobacteria. Microb Ecol 3:305–326

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kraut, M., Hugendieck, I., Herwig, S. et al. Homology and distribution of CO dehydrogenase structural genes in carboxydotrophic bacteria. Arch. Microbiol. 152, 335–341 (1989). https://doi.org/10.1007/BF00425170

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425170

Key words

Navigation